MISSION STATEMENT

The mission of the USF College of Engineering is to continuously aspire to excellence in teaching, research and public service. The College values academic excellence, professionalism, ethics and cultural diversity among its students, staff and faculty. The College is committed to addressing the needs of its constituencies and gives careful consideration to the urban and suburban populations in our service area.

At the graduate level the College is committed to provide students with a strong, broad-based, fundamental engineering education as preparation for careers in industry in a global environment, and government, or as preparation for advanced studies in professional schools of engineering, science, law, business and medicine.

Utilizing the expertise of its individual and collective faculty, the College is dedicated to the development of new fundamental knowledge and processes or procedures, which will benefit all humanity. The College promotes multi-disciplinary approaches, commitment to life-long learning and awareness of societal issues, which are requisite for meeting technological challenges.

The College provides technical assistance and technology transfer to the region, state and nation. In all facets of teaching, research and service, the College emphasizes close liaison with industry and government to provide students and faculty with the skills and perspectives needed to ensure effective technological leadership.

DEPARTMENTS AND PROGRAMS

The College of Engineering offers undergraduate and graduate programs to prepare students for a broad spectrum of professional careers in engineering. Laboratory experience as well as real-world participation in technological problem solving is a key aspect of a professional engineer’s college education. The College of Engineering, in implementing this need, augments its own modern laboratory and research facilities in close collaboration with the professional societies and the many industries in the metropolitan Tampa Bay area. The College of Engineering offers undergraduate degrees in Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Information Systems, Electrical Engineering, Industrial Engineering, and Mechanical Engineering.

The engineering programs of the College have been developed with an emphasis on three broad aspects of engineering activity: design, research, and the operation of complex technological systems. Students who are interested in advanced design or research should pursue the 5-Year Program leading to a Master of Science degree in a designated Engineering discipline. The Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology, Inc. (ABET) and accredited the Engineering programs of the College (Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Industrial Engineering and Mechanical Engineering). The Bachelor of Science program in Computer Science is accredited by the Computing Accreditation Commission (CAC) of ABET.

The supervision of the academic programs for the College is the function of the administrative departments together with several coordinators. Each department is responsible for specific professional programs, faculty, laboratories, and student advising.

The Departments and Programs section that follows contains descriptions of the engineering degrees offered by the College. The “Four Year Programs” section includes courses students need to take, beginning with their first semester at USF, to earn the Bachelor of Science in Engineering degree. Students interested in particular programs offered by the College of Engineering should direct their inquiries to the College of Engineering Office of Student Services (see Advising section below). Information is also available on the College’s website: http://www.eng.usf.edu/.

PROFESSIONAL ENGINEERING

The College of Engineering recognizes that modern engineering solutions draw on knowledge of several branches of engineering. It also recognizes that future technological and societal developments will lead to shifting of the relative emphasis on various branches of engineering, triggered by new needs or a reassessment of national goals. For this reason the College’s programs include a strong engineering foundation portion, designed to equip the prospective engineer with a broad base of fundamental technical knowledge. To this foundation is added the student’s specialization of sufficient depth to prepare him/her to embark successfully on a professional career.

The Bachelor of Science degrees offered in the various engineering disciplines provide the student a broad education with sufficient technical background to contribute effectively in many phases of engineering not requiring the depth of knowledge needed for advanced design or research. The baccalaureate degree is considered the minimum educational credential for participating in the engineering profession and is the first professional degree. Students interested in design and research are strongly encouraged to pursue advanced work beyond the baccalaureate either at this or other institutions. It is evident that large segments of today’s engineering professionals are involved in some form of post baccalaureate study. Engineers are earning advanced degrees to obtain the information and training necessary to meet effectively tomorrow’s technological challenges. All are faced with the continuing problem of refurbishing and updating their information skills and knowledge and obtaining advanced information by means of formal graduate study, seminars, special institutes and other such systems designed for this purpose. Life-long learning is a fact in engineering practice, and graduates must be aware and committed to it.

The Bachelor of Science degree program in a designated engineering discipline and the Master of Science degree in the same discipline may be pursued simultaneously in a program called the Five-Year Program.

Professional Registration

Students who have attained senior status, and are in good academic standing in an ABET accredited Engineering Program, are eligible to register for examinations leading to licensure as Professional Engineers. The first examination, called the Fundamentals of Engineering (FE) Exam, is offered by the Florida Board of Professional Engineers and is usually taken the semester prior to graduation. In addition to the knowledge acquired through the engineering curriculum, many students take advantage of review courses offered by the Engineering Student Center. The College of Engineering’s distance education program, FEEDS, to prepare for the Fundamentals of Engineering Examination. Registering for the FE exam during the senior year is strongly encouraged for students graduating with an engineering degree.

Preparation for Engineering

Students planning to attend USF’s College of Engineering should familiarize themselves thoroughly with the College’s admissions standards and requirements for their prospective
program, which are more stringent than the University’s mini-
mum admission requirements.

The high school student anticipating a career in engineering
should elect the strongest academic program that is available
while in high school, including four years each of English,
mathematics and science (preferably including Chemistry, Phys-
ics, and Biology), as well as full programs in the social sciences
and humanities.

Prospective students considering engineering at the Univer-
sity of South Florida who lack certain preparation in high school
must elect to follow a program to overcome their deficiencies.
Alternatives for these students, classified as “Pre-Engineering
majors’” might include preparatory coursework at the University
of South Florida or community colleges that offer a wide range
of preliminary coursework.

Junior/community college students planning to transfer to
the University of South Florida’s engineering program from a
State of Florida operated college or university should follow a
pre-engineering program leading to an A.A. degree. All transfer
students should complete as much of the mathematics and
science coursework as is available to them. In general, en-
geineering courses taken for military training, at the lower level, or
as part of an A.S. or technology degree are not transferable to
the engineering programs. Transfer students should be aware
that the College expects them to meet departmental admission
requirements just as it expects its own students to meet these
requirements. Junior/community college students intending to
pursue an engineering program at USF should contact the
advisor at their institution and request a course equivalency list.

The College of Engineering can assist students who are
planning to obtain an Engineering degree from the University
of South Florida and who have started their studies elsewhere in
formulating a sound total program. Interested students should
contact the College’s Office of Student Services (813/974-
2684) furnishing sufficient details to permit meaningful re-

College Computing Facilities

The College provides access to centralized computing facil-
ties to undergraduate and graduate students. Most engineering
departments also provide students with local facilities. The
University is an Internet2 site and links and are available to
directly connect to all major supercomputing centers in the country.

The College provides enterprise level servers for computing,
mail, file, web and database services for students and faculty.
The College operates several computer open-access labs for
student use. These labs are equipped with a large number of
modern (Dell) PCs and Unix workstations (Sun Ultra 5). All
computers have all of the necessary software required for
coursework as well as other standard productivity software. The
College also supports a state-of-the-art multimedia lab with
document scanners and CD-ROM burner.

Laboratory computers provide the software required for
coursework and research. Standard programming languages
such as FORTRAN, Basic, Pascal, C, C++ and Java are
provided on these machines. General-purpose software such as
MS Office, MS visual studio and specialized engineering
software including mathematical packages (MathCad, Matlab,
Maple, Macsyma, TK Solver), statistical package (SAS), dis-
cipline specific application packages such as Abaqus, Ansys,
ARENA, Aspen, Cadence and Labview are provided on Unix
and Windows platforms on the network and in the labs. Several
database management system software packages such as
Oracle, MySQL, MSSQL and MS Access are available for
classwork. Multi-media software packages such as MS
FrontPage, Adobe Acrobat, Illustrator, Photoshop, Omni Page
Pro, Macromedia Dreamweaver and Flash are available in the
multi-media lab. The university has also entered
an agreement with Microsoft Corporation for upgrade of stan-
dard office application, development tools and desktop operat-
ing systems.

The college-wide Ethernet network is connected to the USF
campus-wide Gigabit Ethernet backbone. Within the College
connections are provided to laboratories via 100 Mbps Ethernet.
The university’s Internet2 connection links it to more than 150
major universities and research institutions in the nation. Dial-
in access is available to students from a large USF modem bank
as well as through broadband connection.

Student Computer Recommendations

Engineering students will find it necessary to obtain a laptop
personal computer prior to the semester in which specialization
courses commence. The recommended computer configura-
tion for engineering applications is indicated on the College web
page http://www.eng.usf.edu. For further details, contact the
Associate Dean of Engineering or the Director of Engineering
Computing in the College.

Cooperative Education and Internship

Programs

A wide variety of industries and government agencies have
established cooperative programs for engineering students to
provide them the opportunity to become familiar with the prac-
tical aspects of industrial operations and engineering careers.
Students in the Career Resource Center’s Cooperative Educa-
tion (Co-op) program may alternate periods of paid employment
in their major field with periods of study, or may elect to
participate in part-time employment while attending classes
every semester. Students following the Co-op program usually
encounter no problems in scheduling their program, since
required Social Science and Humanities, Mathematics and
Science, and Engineering Common courses are offered every
semester. Students normally apply for participation in this
program during their sophomore year and pursue actual Co-op
employment during their sophomore and junior years. The
senior year is generally pursued on a full-time study basis, since
many specialization courses are not offered every semester.
The students receive a Cooperative Education Certificate upon
successful completion of a minimum of two work assignments.

Engineering Students in the University

Honors College

Army, Air Force & Navy R.O.T.C.
For Engineering Students

The academic and technological knowledge an engineering
degree provides is a distinct advantage to individuals interested
in a military appointment or career. This is especially true for
those participating in one of the ROTC programs at USF. The
Engineering degree requirements, combined with ROTC re-
quirements, may require five years to complete.

Five-Year Programs Leading to the
Bachelor and Master of Science
Degrees in Engineering

Students who, at the beginning of their senior year, are
clearly interested in graduate study are invited to pursue a Five-
Year Program of study leading simultaneously to the Bachelor
of Science and Master of Science in Engineering. The five-year
program includes a two-year research program extending
through the fourth and fifth year.

Undergraduate Admission to the College
of Engineering

Students may apply to the College of Engineering upon initial
entry to the University by declaring Engineering as their in-
tended major on their admissions application. When a student
is accepted to USF, engineering staff will review the necessary
credentials and notify the applicant of his or her Engineering
status.
USF students may apply through the Office of Engineering Student Services. To be considered for admission to the College, an applicant must be accepted by the University as a degree-seeking student and be in good standing academically.

College of Engineering Admission Requirements

Students meeting or exceeding the below criteria are granted direct entry to the College. Others are classified “Pre-Engineering.” Pre-Engineering students are fully admitted to the College after completing required pre-requisite courses. Additional requirements must be met prior to admission to specific degree programs.

1. Freshmen:
 a. Test Scores:
 SAT—combined score of 1150 minimum with a minimum quantitative of 550.
 ACT—combined score of 25 minimum and mathematics of 25 minimum.
 b. High School Mathematics: Should include sufficient algebra and trigonometry to enter Engineering Calculus I.
 c. High School Grade Point Average of 2.5/4.0.

2. Transfer Students:
 a. Engineering
 Florida community college transfer students that have completed the courses shown below with a minimum grade of “C” are accepted directly into the College of Engineering. Additional requirements must be met prior to admission to specific degree programs.

Communications:
 ENC 1101/1102 English I and II (6)

Humanities & Social Sciences:
 Humanities Courses (6)
 Social Science Courses (6)
 Humanities or Social Sciences (3)

Mathematics:
 USF C/C
 MAC 2281 MAC 2311* (4)
 MAC 2282 MAC 2312* (4)
 MAC 2283 MAC 2313* (4)
 MAP 2302 MAP 2302 (3)
*or MAC 2281, MAC 2282, MAC 2283

Natural Sciences:
 USF C/C
 CHM 2045 CHM 1045* (3)
 CHM 2045L CHM 1045L* (1)
 PHY 2048 PHY 2048 (3)
 PHY 2048L PHY 2048L (1)
 PHY 2049 PHY 2049 (3)
 PHY 2049L PHY 2049L (1)
*or CHS 1440 Chemistry for Engineers

b. Computer Science
 Transfer students into the Computer Science program from a Florida community college are not required to have MAP 2302 or the Chemistry course indicated above.

c. Information Systems
 Transfer students into the Information Systems program from a Florida community college are not required to have MAP 2302 or Calculus I or the Chemistry course indicated above.

All other transfer students should contact the College’s Admission Office (813/974-2684).

Transfer Credit

The USF College of Engineering will accept transfer credit when appropriate if the transferred course has been passed with a grade of “C” or better. In some cases credit for a course may be granted, but the hours accepted may be less than the hours earned at another school.

While credit work from other institutions may be granted subject to the conditions of the previous paragraph, the last one-quarter credits, that includes a minimum number of semester hours of engineering coursework specified by the degree-granting department, must be taken at USF to receive the baccalaureate degree. The College of Engineering’s Associate Dean for Academics must approve exceptions.

Transfer credit evaluation is conducted in the Office of Engineering Student Services. Transfer students should be prepared to submit College catalogs and course syllabi from the previous institution if required.

In general, engineering and technology courses taken at the lower level, at technical schools, or as part of professional or military training, are not applicable to the degree programs of the College of Engineering.

Required Prerequisites for Entering Engineering programs

Once a student has been admitted to the College of Engineering, he/she must then seek admission into one of the academic departments. Departmental admissions requirements vary by program. Students considering transferring to USF should familiarize themselves with the requirements for their intended department as early as possible. Students admitted to the University of South Florida and the College of Engineering must qualify for the program of their choice by completing the courses and successfully meeting the GPA criteria detailed below. Unless otherwise stated, required math, science or engineering courses must be completed with a grade of C or better. A grade of C- or below does not fulfill the requirement.

Prior to being admitted to a department, a student may be permitted to take no more than two departmental engineering courses. Individual departments may have continuation requirements.

The Department of Chemical Engineering

Bachelor of Science in Chemical Engineering:

• Completion of
 MAC2311 or MAC2281, MAC2312 or MAC2282, MAC2313 or MAC 2283
 PHY2048, PHY2048L, PHY2049, PHY2049L
 CHM2045, CHM2045L
 with a minimum grade of C in each course.
 • A minimum overall GPA of 2.0
 • A minimum USF GPA of 2.0

The Department of Civil and Environmental Engineering

Bachelor of Science in Civil Engineering:

• Completion of
 MAC2311 or MAC2281, MAC2312 or MAC2282, MAC2313 or MAC 2283
 PHY2048, PHY2048L, PHY2049, PHY2049L
 CHM2045, CHM2045L
 with a minimum grade of C in each course.
 • A minimum overall GPA of 2.0
 • A minimum USF GPA of 2.0

The Department of Computer Science and Engineering

Bachelor of Science in Computer Engineering and Bachelor of Science in Computer Science

Admission to the Department as a Pre-CSE student requires

• Completion of
 ENC1101, ENC1102
 MAC2311or MAC2281, MAC2312 or MAC2282
 PHY2048, PHY2048L, PHY2049, PHY2049L
 CHM2045, CHM2045L
 with a 3.0 GPA (based on best attempt in these courses) and a minimum grade of C in each course.
 • A minimum overall GPA of 2.0
 • A minimum USF GPA of 2.0

Admission to the major is granted after also meeting the following continuation requirement

• Completion of COP2510 with a minimum grade of C and
• Completion of CDA3103 and COP3514 with a 3.0 GPA (based on all attempts in these two courses)
FIVE-YEAR PROGRAMS LEADING TO BACHELORS AND MASTERS DEGREES IN ENGINEERING

Students who, at the beginning of their senior year, are clearly interested in graduate study are invited to pursue a Five-Year Program of study leading simultaneously to the Bachelor of Science in Engineering or Engineering Science and Master of Science in Engineering or Engineering Science degrees. The general basis of the five-year program includes:

1. A two-year research program extending through the fourth and fifth year.
2. The opportunity of taking some graduate courses during the fourth year and deferring the taking of some senior courses to the fifth year.
3. Six credit hours, to be determined by program, are counted toward both degrees reducing the master’s degree to 30 hours or less.

Students apply for admission to this program through their departmental advisor. Admissions requirements vary by department. The college-wide minimum requirements are:

1. Senior standing (90 credits) with at least 16 upper level engineering credits completed at the University of South Florida with a 3.3 GPA.
2. A minimum score of 1000 on the verbal and quantitative portions of the Graduate Records Examination.
3. Above-average performance in the chosen Engineering program.

Engineering Advising

Effective pursuit of engineering and engineering related studies requires careful attention to both the sequence and the type of courses taken. The engineering curriculum differs in key respects from the study plans of other majors—even in the freshman year.

New students must attend the University’s Orientation program. They will be introduced to the engineering advisors during this program and receive advisement for their first semester. The student and advisors jointly work out a plan of study that meets both the student’s career objectives and the College of Engineering’s degree requirements. The advisors maintain the College of Engineering student’s records.

Advising Offices

Tampa Campus: TECO Energy Hall, Room 1302, (813) 974-2684.
Sarasota Campus: Palmer “C” Building (PMC), Room 101, (941) 359-4331/4330.
Lakeland Campus: Student Services Office (LLC), Room 2100, (863) 667-7071

Preliminary Coursework for Engineering Students

The College of Engineering Bachelor of Science programs are founded on a set of coursework that is designed to give each student a thorough foundation of knowledge on which specialization studies and a professional career can be based. Emphasis is placed on three key elements: development of communication skills, familiarity with the social sciences and humanities and a solid base in science and mathematics.

Each degree-granting department has developed a list of courses to provide key elements for the degree offered. While the specific courses will vary slightly from one department to another, the categories are as follows:

- General Education Courses
- Mathematics, Chemistry and Physics
- Engineering Courses
- Department Specialization
- Special course requirements exist for Chemical Engineering, Computer Engineering, Computer Science, and Information Systems. Students selecting any of these disciplines should be aware of their specific requirements. Students may consult the College’s Advising Office for detailed information.

The Engineering undergraduate student must not only be a technically competent individual but a person who can understand, adjust and contribute to the social environment.
Students who transfer from a State of Florida community college with an Associate of Arts will find their General Education coursework satisfies the USF General Education Requirements.

All Engineering students, except those completing a second bachelor’s degree, must complete the USF Exit Requirements. The Literature and Writing portion can be met by completing ENC 3211 Communication for Engineers. The three-hour Major Works/Major Issues requirement is integrated into the senior year curriculum.

1. University Liberal Arts Requirements

All students are required to take 42 semester hours to complete the University liberal arts requirements. Thirty-six (36) semester hours will satisfy the general education course requirements and 6 semester hours will satisfy the exit requirements. These requirements are distributed as follows:

<table>
<thead>
<tr>
<th>General Education Requirements*</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition</td>
<td>6</td>
</tr>
<tr>
<td>Quantitative Methods</td>
<td>6</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>6</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>6</td>
</tr>
<tr>
<td>Historical Perspectives</td>
<td>6</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>3</td>
</tr>
<tr>
<td>African, Latin American, Middle Eastern or Asian Perspectives</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exit Requirements* (Must be taken at USF)</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Works and Major Issues</td>
<td>3</td>
</tr>
<tr>
<td>Literature and Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

*Courses may be certified in more than one area, but students may use each course in only one (1) area.

In addition, 12 hours considered Gordon Rule Communication (6A) courses must be completed. For Engineering students, these are ENC 1101, ENC 1102, ENC 3211, and one more. The fourth course is selected from any general education or departmental courses that have been certified Gordon Rule Communication (6A) by the USF Undergraduate Council.

Courses in the liberal arts requirements should incorporate the following components whenever they are relevant to the specific discipline: the learning skills of conceptual thinking, analytical thinking, creative thinking, written expression, oral expression, and the dimensions of values and ethics, international perspectives, environmental perspectives, race and ethnicity, and gender. When warranted by the subject matter, each course must incorporate consideration of at least one of the dimensions and one of the thinking skills to meet the liberal arts requirements.

Departments should ensure that courses proposed for the liberal arts have sufficient depth and breadth. These courses will share the substantive rigor and intellectual challenge of courses offered for major credit, with the specific feature of offering an integrative perspective of the discipline and its relationship to academia as a whole. Additionally, such courses will encourage majors to interact with students from other disciplinary backgrounds.

2. Mathematics and Science Core Requirements

For students in the engineering programs, the mathematics coursework consists of a Calculus for Engineers sequence (or a calculus sequence of equivalent level), Differential Equations, and additional hours of designated courses supportive of the student’s selective field of specialization, as specified by the department. Science coursework includes the Physics with Calculus sequence and General Chemistry course(s) depending on the degree-granting program.

Students whose high school preparation is insufficient to enter the Calculus for Engineers are required to take supplementary algebra and trigonometry prior to being considered for acceptance into the College.

Grading Policies

1. SJU Grading Policy

Students pursuing College of Engineering degree programs are expected to take their courses on a graded basis. Please refer to the grading system in the Academic Policies and Procedures section of this catalog. SJU grading option must be requested during the first week of classes. Courses taken on an S/U basis are not applicable to the College’s degree programs. Exceptions require written approval of the department advisor prior to registration.

2. I Grade Policy

The criteria for requesting a grade of "I" (incomplete) are detailed in the University’s Academic Policies and Procedures portion of this Catalog. A written agreement detailing the specific requirements and time limit for completion is required in some departments and recommended in all others.

Full tuition must be paid and an audit form must be submitted to the Registrar’s Office by the end of the first week of classes if a student wishes to attend the course again to review the material. If a student registers for the course but does not request to audit the course, a grade will be submitted for the subsequent registration and the I grade will be converted to an F. In this case, the student may choose to apply grade forgiveness.

3. Minimum Acceptable Grade in Required Courses

Unless otherwise stated, the minimum acceptable grade in any required math, science or engineering course is C. A grade of C- or less does not fulfill the requirement.

Continuation and Graduation Requirements

1. Minimum GPA Requirements

To meet graduation and continuation requirements all undergraduate Engineering students must maintain a minimum cumulative GPA of 2.0 in the following categories:

1) Overall Undergraduate GPA
2) USF GPA
3) GPA in Math and Science courses required for the curriculum
4) Engineering Courses
5) Specialization Courses

*Note: The Math Science GPA is based upon the best attempt. Other categories include all attempts, unless grade forgiveness has been applied. In no case will the minimum GPA for a category be less than 2.0.

Students who do not maintain the required minimums of the program pursued in each category are ineligible for further registration in the College unless individually designed continuation programs are recommended by the student’s academic advisor and approved by the department undergraduate coordinator or the Director of Admissions & Advising and the Engineering Associate Dean for Academic Affairs or his designee. All students who are academically dismissed from the University will be denied readmission to the College of Engineering unless they meet admission requirements in effect at the time readmission is sought and are recommended for readmission by the department and the Associate Dean for Academic Affairs.
2. English Requirement
Students evidencing an English deficiency will be required to initiate the necessary corrective programs, with the assistance of their advisors. It is recognized that such deficiencies can exist even though a student has met the University's minimum English requirements. Correction of any deficiency must commence the term after a student has been notified and must be completed prior to recommendation of the student for graduation by the faculty of the College.

3. Mathematics Requirement
Students evidencing a lack of the ability to apply mathematics will be required to take remedial coursework beyond their regular degree requirements. Faculty of the College who encounter students who are deficient in their mathematical ability will refer such cases to the Advising Office.

4. Residency Requirement
Transfer students must complete a minimum number of specialization courses in the USF degree granting department. The minimum number of USF specialization credit hours required is established by the respective academic department. In no case will this be less than 18 hours. The University residency requirement of 30 USF hours must also be met. General engineering courses are not considered specialization courses.

5. Satisfactory Progress and Years to Degree
Students who register for a course three times without receiving a grade of "D" or better (i.e., receive grades of D-, F, or W) will be denied further enrollment in the College of Engineering unless written permission is obtained from the Department Chairperson and the College Associate Dean for Academic Affairs.

The College of Engineering requires that a student complete the baccalaureate degree within five years after beginning engineering specialization courses. Specialization courses taken more than five years prior to graduation will not be counted toward the degree. Exceptions may be granted by the Academic Department.

6. Disruption of Academic Process and Academic Dishonesty
The College of Engineering will maintain an environment that encourages all to study and conduct engineering research free from undue disruption. Disruption of the Academic Process is a matter the College is obliged to report to Student Judicial Services. Academic dishonesty, in any form, is taken very seriously by the College of Engineering and will result in sanctions. The most serious penalty is dismissal from the University. (See University policies regarding academic dishonesty.)

7. GRIEVANCE PROCEDURE
Students should make themselves fully aware of the University's grievance procedures. (See University policies regarding grievance procedures.)

8. University, College and Program Requirements
The College requirements described in the section above are in addition to requirements set forth in the University policy and procedures section and the departmental sections of this catalog. It is the student's responsibility to complete all university, college, program and curricular requirements prior to graduation.

9. Graduation Application Procedures and Deadlines
Each engineering student is required to complete an application for graduation and check list. Students should schedule an appointment with the Department Undergraduate Coordinator to review graduation qualifications and obtain departmental signatures well in advance of the College graduation application deadline. Approved applications must be submitted to the College of Engineering Advising Office the term prior to the semester in which graduation is sought. Graduation applications are due on the dates indicated below.

- August 1st for Fall Graduation
- November 1st for Spring Graduation
- February 15th for Summer Graduation

10. Fundamentals of Engineering Examination
Taking the Fundamentals of Engineering Exam prior to graduation is required in some departments and strongly encouraged in others. (See the Office of Engineering Student Services for applications and information.)

Certificate Programs
Several formalized engineering certificate programs, at the undergraduate and graduate levels, have been developed to provide qualified individuals an opportunity to enhance their degrees prior to graduation or to engage in discipline related continuing education.

Certificate in Biomedical Engineering
Biomedical Engineering is a highly interdisciplinary field where basic engineering principles are applied to problems in the biomedical sciences. Typical specific areas of interest include: understanding basic biochemical and physiological processes, designing and analyzing medical diagnostics and procedures, evaluation and design of health care systems and facilities, design and valuation of prosthetic devices, an general biomedical product development. The College of Engineering offers an undergraduate Enhancement Certificate in Biomedical Engineering. There are two main purposes for the certificate program 1) to accommodate students interested in entering medical school following graduation (this program satisfies most of the typical minimal admission standards for medical school); and 2) to prepare students for graduate education program, drawing from all engineering disciplines, biology, physical sciences, biomedical and clinical sciences. Undergraduate students anticipating graduate studies in the bioengineering area (or related fields such as medicine) are strongly encouraged to gain research experience as part of their program. Research possibilities exist in Engineering, the Health Sciences Center, Public Health, and Arts and Sciences.

The Certificate in Biomedical Engineering provides students an opportunity to get an introduction to a rapidly developing field of study and to receive recognition for their endeavors. Students in the program must fulfill all the requirements for an Engineering undergraduate degree, such as Bachelor of Science in Chemical Engineering and also meet the additional requirements of the Certificate program. Enrollment is through the Department of Chemical Engineering.

Certificate in Total Quality Management
An undergraduate student, or graduate engineer, may enhance their professional achievement by receiving a Certificate in Total Quality Management. The student must satisfactorily complete five courses (15 credit-hours beyond the BS degree) of the eight courses in Total Quality Management. Enrollment is through the Department of Industrial and Management Systems Engineering.

Certificate in Materials Science and Engineering
The Materials Science and Engineering certificate requires 15 credit hours of theoretical and applied materials courses. The Materials Science and Engineering Certificate is designed to provide students with an opportunity to gain a focused introduction into a dynamic and explosively growing technological field. The certificate has been designed to be as flexible as possible thus allowing students from different disciplines to take...
advantage of the program. Enrollment is through the Department of Chemical Engineering.

Certificate of Wireless Engineering
This Certificate provides post-baccalaureate students with studies in engineering techniques of modern wireless circuits, antennas, and communication systems. Students must have successfully completed an undergraduate course in Electromagnetics. The candidate should also have an earned B.S. in Electrical Engineering or Computer Engineering. Any other degree tract must meet the Electrical Engineering department’s approval.

Certificate of Enhancement
The Certificate of Enhancement in (a designated engineering discipline) provides students an opportunity to gain an enhanced experience in their chosen field while pursuing an engineering degree and to permit them to receive recognition for the same requirements. At the present time, each department may offer a certificate of enhancement in the designated discipline. These include The Certificates of Enhancement in Chemical Engineering, Civil & Environmental Engineering, Computer Science, Computer Engineering, Electrical Engineering, Engineering Systems and Mechanical Engineering. In addition, there are two specialized Certificates of Enhancement in Transportation Engineering and Wireless Engineering.

Requirements:
1. Enrolled in a Bachelor of Science degree program in a specified engineering discipline.
2. A minimum of 15 hours of additional elective courses, not included as a part of the B. S. degree, from an approved list. Courses must be taken on a letter-grade basis, and a minimum of 9 hours must be in engineering courses.
3. A G.P.A. of 2.0 or greater for the additional hours.
4. The student must receive the engineering degree to receive the Certificate of Enhancement.

Please contact the appropriate department undergraduate coordinator to be accepted in the program.

FOUR-YEAR PROGRAMS LEADING TO A BACHELOR OF SCIENCE DEGREE IN A DESIGNATED ENGINEERING FIELD

These engineering degrees are awarded upon successful completion of a program consisting of the required areas of coursework. Programs are offered in the following disciplines of Engineering:

• CHEMICAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Chemical Engineering (B.S.C.H.)

Graduate Degrees Offered:
Master of Science in Chemical Engineering (M.S.C.H.)
Master in Chemical Engineering (M.C.H.E.)
Master of Engineering (M.E.)
Master of Science in Engineering (M.S.E.)
Doctor of Philosophy in Chemical Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers coursework and study in all areas fundamental to Chemical Engineering. Engineering specialization courses, together with mathematics, physics, chemistry, other interdisciplinary engineering fundamentals, and liberal arts courses, provide the basis for long-range professional progress. Because of the many professional areas available for employment to the chemical engineer, the students are also required to take a number of electives from areas such as biotechnology, materials, and environmental engineering. These electives are designed to broaden the experience and, therefore, the employment possibilities of our graduates. The Chemical Engineering Department also offers a sequence of courses in Chemical Engineering Science, biotechnology and biomedical engineering.

A sequence of courses in the engineering aspects of biotechnology is currently available within the Chemical Engineering program. Topics include applied microbiology, fermentation, enzyme technology, cell separation technology, biomedical engineering, biomaterials, biotechnology, and biomechanics.

Students pursuing the Bachelor of Science in Chemical Engineering take coursework in advanced chemistry, thermodynamics, fluids, heat, and mass transfer, numerical methods, separation processes, reacting systems, instrumentation, control, and plant design. Students must also satisfactorily complete a design project as part of their program. Students seeking the Biotechnology/Biomedical Certificate are also required to take additional courses in general biology, microbiology, and biotechnology. Chemical engineering students must maintain a GPA of 2.0 in required departmental courses. Therefore, it is imperative that the students retain close contact with their advisor.

Students completing this program normally initiate their careers in manufacturing, environmental, and biological enterprises. Chemical engineers are found in administrative, technical, and research positions in these industries. Main products of these industries are petrochemicals, polymers, fibers, natural and synthetic fuels, electronic materials, fertilizers, pharmaceuticals, bio-materials, etc.

Solutions of modern societal and scientific problems often require the use of chemical engineering skills. Chemical engineering students must have access to a personal computer during their last two years of study. Those who do not own one will be severely disadvantaged.

Mission Statement
The mission of the Department of Chemical Engineering is to provide fundamental knowledge and contemporary skills for the development, economic design, and safe operation of chemical processes in a manner compatible with societal values.

Program Education Objectives
1. Our graduates will be able to apply engineering and scientific principles to the development, economic design, and safe operation of chemical processes in a manner compatible with societal values.
2. Our graduates will be able to build upon their undergraduate education, expanding and adapting their knowledge and skills in their chosen career path.
3. Our graduates will be able to function as professionals, working both as individuals and as team members striving towards common objectives, communicating effectively and following appropriate ethical standards in the process.
4. Our graduates will be able to be productive members of society in general as a result of their technical abilities combined with their broad exposure to the humanities and awareness of societal and global issues.

Departmental Policies
In addition to the College’s graduation requirements, the department has the following policies:
1. Mandatory academic advising of students for each term.
2. Exit interviews as a graduation requirement.
Four-Year Curriculum - Chemical Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:
If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the University’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade.

Communications:
- ENC 1101/1102 English I and II (6)

Humanities & Social Sciences:
- Humanities Courses (6)
- Social Science Courses (6)
- Humanities or Social Sciences (3)

Mathematics:
- MAC 2281 MAC 2311* (4)
- MAC 2282 MAC 2312* (4)
- MAC 2283 MAC 2313* (4)
- MAP 2302 MAP 2302 (3)

*or MAC 2281, MAC 2282, MAC 2283

Natural Sciences:
- CHM 2045 CHM 1045* (3)
- CHM 2045L CHM 1045L* (1)
- PHY 2048 PHY 2048 (3)
- PHY 2049 PHY 2049 (3)
- PHY 2049L PHY 2049L (1)

*or CHS 1440 Chemistry for Engineers

Chemical Engineering Admissions Requirements
Students must have completed the equivalent USF Engineering Calculus General Physics and Chemistry courses with a C or better in each course; must have a USF and an overall GPA of 2.0 or better.

BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING

The schedule that follows indicates how a diligent student who can devote full time to coursework can satisfy requirements in four academic years. Students without a solid foundation or those who cannot devote full time to academics should plan a slower pace.

Semester I	ENC 1101 Composition I	3
	MAC 2281 Engineering Calculus I	4
	CHM 2045 General Chemistry I	3
	CHM 2045L General Chemistry I Lab	1
	EGN 3000 Foundations of Engineering	1
	ALAMEA Perspectives Elective	3
	Fine Arts Elective	3
	Total	18

Semester II	ENC 1102 Composition II	3
	MAC 2282 Engineering Calculus II	4
	CHM 2046 General Chemistry II	3
	CHM 2046L General Chemistry II Lab	1
	PHY 2048 General Physics I	3
	PHY 2048L General Physics I Lab	1
	Historical Perspectives Elective	3
	Total	18

Semester III	CHM 2210 Organic Chemistry I*	3
	CHM 2210L Organic Chemistry I Lab*	2
	MAC 2283 Engineering Calculus III	4
	PHY 2049 General Physics II	3
	PHY 2049L General Physics II Lab	1
	EGN 3613C Engineering Economy	3
	Total	15

*or BSC 2010 and BSC 2010L if the 3 hr science elective is replaced by 4 hours of advanced biology that has been approved by the department.

Semester IV	MAP 2302 Differential Equations	3
	EGN 3343 Thermodynamics	3
	CHM 2211 Organic Chemistry II	3
	CHM 2211L Organic Chemistry II Lab	2
	ENC 3211 Communications for Engineers (6A L&W)	3
	Total	14

Summer	EGN 3343 Engineering Statistics	3
	Historical Perspective Elective	3
	Social Science Elective	3
	Total	9

Semester V	ECH 3023C Process Engineering I	4
	ECH 3023L Chemical Engineering Lab I	1
	ECH 4264 Transport Phenomena	4
	ECH 3702 Instrument Systems	3
	ECH 4123 Chemical Engineering Thermo	3
	Total	15

Semester VI	CHM 4412 Physical Chemistry III	3
	ECH 4265C Process Engineering II	4
	ECH 4265L Chemical Engineering Lab II	1
	ECH 4845 Quantitative Methods	3
	Chemical Engineering Elective	3
	Total	14

Semester VII	ECH 4415C Process Engineering III	4
	ECH 4415L Chemical Engineering Lab III	1
	CHM 4931 Intro. to Materials Science & Engineering	3
	ECH 4323C Automatic Controls I	4
	ECH 4936 Undergraduate Seminar	1
	Social Science Elective	3
	Total	16

Semester VIII	ECH 4615 Plant Design (MW/MI)	4
	Chemical Engineering Elective	7
	Science Elective	3
	Total	14

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC 3211 and by selecting one technical or general education elective that is an approved 6A communication course or by completing an AA degree at a Florida Community College.
Exit Requirements in Major Works/Major Issues (MW/MI) and Literature and Writing (L&W) are fully met through ENC3211 and ECH4615.

• CIVIL AND ENVIRONMENTAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Civil Engineering (B.S.C.E.)

Graduate Degrees Offered:
Master of Science in Civil Engineering (M.S.C.E.)
Master or Science in Engineering (M.S.E.)
Master of Science in Environmental Engineering (M.S.E.V.)
Master of Civil Engineering (M.C.E.)
Master of Engineering (M.E.)
Master of Environmental Engineering (M.E.V.E.)
Doctor of Philosophy in Civil Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers course work and study pertinent to Civil Engineering, Engineering Mechanics, Material Science, and Environmental Engineering. Areas of concentration are structural engineering, engineering mechanics, geotechnical engineering, transportation engineering, water resources engineering, materials and corrosion engineering, and environmental engineering.

Students completing the program may enter the profession as engineers in civil, structural, geotechnical, transportation, water resources, environmental, hydraulics, or materials disciplines. All of these disciplines share the need for knowledge in the areas of engineering mechanics, civil engineering, material science, and environmental engineering. Through choice of the proper area of concentration, a student has the opportunity to channel academic studies specifically towards his/her career choice.

Graduates of the program may commence their engineering careers in either industry, engineering consulting firms, or public service at the federal, state, or local level. Initial assignments may include planning, design and implementation of water resources systems; planning and design of transportation and housing systems; regional planning, design, and management for abatement of air, water and solid waste pollution problems; design of bridges and single and multistory structures; and supervision of construction projects.

Mission Statement
The mission of the Department of Civil and Environmental Engineering is:
1. to provide a quality educational experience for all students, both undergraduate and graduate, at the level of the top ranked universities in the nation;
2. to develop new knowledge, processes, or procedures through research which will benefit mankind; and
3. to provide service through professional activities.

Undergraduate Program, Vision and Guiding Principles
The Department will provide our undergraduate students with a strong, broad-based, engineering education that gives them the basic intellectual and organization skills that allow them to work with complex systems with technological, social, and environmental components. As many of our students begin work upon graduation in industry or with governmental organizations, the curriculum is designed to prepare our students for these roles by requiring a number of courses in the various fields of civil engineering and by providing limited specialization in one given area. The curriculum is designed to encourage lifelong learning and to prepare students for undertaking advanced studies in engineering or in other professional areas.

Undergraduate Educational Objectives
1. The Department will provide undergraduate students with the strong technical education needed for a career in civil engineering.
2. The Department will provide undergraduate students with an education that prepares them to perform effectively in the workplace with the communication skills needed to deal with coworkers, clients, and the public.
3. The Department will provide undergraduate students with an education that allows them to understand the societal implications of engineering decisions and designs in both a local and global context and the ethical training to evaluate those implications.
4. The Department will provide undergraduate students with an education that promotes the full and continuing development of their potential as engineers and effective members of society.

Concentrations
In addition to designated common coursework in engineering mechanics, civil, and environmental engineering, students undertake a concentration of 9 hours of coursework plus a 3-hour capstone design course.

Departmental Policies
In addition to the College’s graduation requirements, the Department has the following policies:
1. Advising is mandatory prior to each term.
2. Exit interviews are a graduation requirement for all students;
3. Only 2 "D" grades in engineering courses may be used to fulfill graduation requirements.
4. Students are strongly advised to take the Fundamental Exam (F.E.)

Four-Year Curriculum - Civil Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:
If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade.

Students qualify for direct entry to their intended department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all of the other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university. The following are transferable courses from the Community College that will be accepted in the Math/Science/Engineering areas:

Communications:
ENC 1101/1102 English I and II (6)

Humanities & Social Sciences:
Humanities Courses (6)
Social Science Courses (6)
Humanities or Social Sciences (3)

Mathematics:
USF C/C
MAC 2311* MAC 2311* (4)
MAC 2312* MAC 2312* (4)
MAC 2313* MAC 2313* (4)
MAP 2302 MAP 2302 (3)
*or MAC 2281, MAC 2282, MAC 2283
Natural Sciences:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>USF CHM 2045</td>
<td></td>
</tr>
<tr>
<td>C/C CHM 2045L</td>
<td></td>
</tr>
<tr>
<td>PHY 2048</td>
<td></td>
</tr>
<tr>
<td>PHY 2048L</td>
<td></td>
</tr>
<tr>
<td>PHY 2049</td>
<td></td>
</tr>
<tr>
<td>PHY 2049L</td>
<td></td>
</tr>
<tr>
<td>*or CHS 1440 Chemistry for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Please be aware of the immunization, foreign language, and continuous enrollment policies of the university, as well as the qualitative standards required.

Civil and Environmental Engineering Admissions Requirements

Transfer students must have completed the equivalent USF Engineering Calculus sequence with a 2.0 GPA; must have completed one year of equivalent USF General Physics and Chemistry courses with a minimum of 2.0 GPA; must have a USF and overall GPA of 2.0 or better.

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

The schedule that follows indicates how a diligent student who can devote full time to coursework can satisfy requirements in four academic years. Students without a solid foundation or those who cannot devote full time to academics should plan a slower pace.

<table>
<thead>
<tr>
<th>Semester I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1101 Composition I</td>
</tr>
<tr>
<td>MAC 2281 Engineering Calculus I</td>
</tr>
<tr>
<td>CHM 2045 General Chemistry I</td>
</tr>
<tr>
<td>CHM 2045L General Chemistry I Lab</td>
</tr>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
</tr>
<tr>
<td>Social Science Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1102 Composition II</td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II</td>
</tr>
<tr>
<td>CHM 2046 General Chemistry II</td>
</tr>
<tr>
<td>PHY 2048 General Physics I</td>
</tr>
<tr>
<td>PHY 2048L General Physics I Lab</td>
</tr>
<tr>
<td>EGS 1113 Introduction to Design Graphics</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAMEA Perspective Elective</td>
</tr>
<tr>
<td>Historical Perspective Elective</td>
</tr>
<tr>
<td>EGN 3613C Engineering Economy I</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester III</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 2049 General Physics II</td>
</tr>
<tr>
<td>PHY 2049L General Physics II Lab</td>
</tr>
<tr>
<td>MAC 2283 Engineering Calculus III</td>
</tr>
<tr>
<td>EGN 3311 Statics</td>
</tr>
<tr>
<td>Historical Perspectives Elective</td>
</tr>
<tr>
<td>ENC 3211 Communication for Engineers (6A L&W)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP 2302 Differential Equations</td>
</tr>
<tr>
<td>EGN 3321 Dynamics</td>
</tr>
<tr>
<td>EGN 3343 Thermodynamics</td>
</tr>
<tr>
<td>EGN 3443 Engineering Statistics</td>
</tr>
<tr>
<td>EGN 3365 Materials I</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester V</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 3353 Fluid Mechanics</td>
</tr>
<tr>
<td>EGN 3331 Mechanics of Materials</td>
</tr>
<tr>
<td>EGN 3331L Mechanics of Materials Lab</td>
</tr>
<tr>
<td>ENV 4001 Environmental Engineering I</td>
</tr>
<tr>
<td>TTE 4004 Transportation Engineering I</td>
</tr>
<tr>
<td>EGN 4420 Numerical and Computer Tools</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CES 3102 Structures I</td>
</tr>
<tr>
<td>CWR 4202 Hydraulics</td>
</tr>
<tr>
<td>CGN 3021 CE Lab</td>
</tr>
<tr>
<td>EGN 3373 Introduction to Electrical Systems I</td>
</tr>
<tr>
<td>GLY 3850 Geology for Engineers</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEG 4011 Geotechnical Engineering I</td>
</tr>
<tr>
<td>CEG 4011L Geotechnical Engineering Lab</td>
</tr>
<tr>
<td>CE Concentration Elective</td>
</tr>
<tr>
<td>CE Concentration Elective</td>
</tr>
<tr>
<td>Fine Arts Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGN 4122 Professional/Ethical Issues in Engineering (MW/MI)</td>
</tr>
<tr>
<td>CE Concentration Elective</td>
</tr>
<tr>
<td>CE Concentration Elective</td>
</tr>
<tr>
<td>CE Capstone Design Requirement (MW/MI)</td>
</tr>
<tr>
<td>Social Science Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC 3211 and by selecting one technical or general education elective that is an approved 6A communication course or by completing an AA degree at a Florida Community College.

Exit Requirements in Major Works/Major Issues (MW/MI) and Literature and Writing (L&W) are fully met through ENC3211 and a Capstone Design Course indicated as MW/MI.

Civil Engineering Concentration AND CAPSTONE DESIGN Requirements

The following is a list of possible concentration electives that students may take. It is important that students adhere to prerequisites and corequisites in choosing their electives.

- CCE 4034 Construction Management
- CEG 4012 Geotechnical Engineering II
- CES 4605 Concepts of Steel Design
- CGN 4702 Concepts of Concrete Design
- CNSG 4702 Concrete Construction Materials
- CNSG 4933 Transportation and Society
- CWR 4103 Water Resources I
- CWR 4541 Water Resources II
- ENV 4417 Water Quality & Treatment
- TTE 4005 Transportation Engineering II

Sample tracks for Specialization Areas

Water Resources/Environmental Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWR 4103 Water Resources I</td>
<td>3</td>
</tr>
<tr>
<td>CWR 4541 Water Resources II</td>
<td>3</td>
</tr>
<tr>
<td>ENV 4417 Water Quality and Treatment</td>
<td>3</td>
</tr>
<tr>
<td>CEG 4012 Geotechnical Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>CWR 4812 Capstone Water Resources/Environmental Design</td>
<td>3</td>
</tr>
</tbody>
</table>
The Computer Science program focuses on the theory of computation and computer organization. Additional course work in programming languages, algorithms, software engineering, and a wide range of electives supplement the core coverage of hardware and software.

The Information Systems program combines a basic coverage of hardware and software with a core of business related courses and additional course work in areas such as networks and database. The emphasis in this program is on the application of computing.

Graduates from these programs follow fruitful careers developing either scientific or business applications of computers, as well as in the design of computer systems. They are often involved in the systems level definition of information processing complexes for both manufacturers of computers and for users. A wide and expanding variety of design and applications opportunities characterize this field. The rapid growth and continual change within this field makes it essential for students to acquire a broad foundation in applied mathematics and the physical sciences, and to develop communication skills and to become familiar with the domains of potential computer applications in the Humanities and Social Sciences. Research and development opportunities as a computer scientist and engineer, often following graduate education, are present in the areas of computer architecture and VLSI design, artificial intelligence, software engineering, digital data communications, software testing, robotics, database, networks, user interface, fault-tolerant computing and testing, computer graphics, image processing and computer vision, and simulation.

Mission Statement

In keeping with the mission of the College of Engineering, the Computer Science & Engineering Department strives for excellence in teaching, research, and public service. Specifically the Department aspires to:

1. Lead the advancement of computer science through internationally recognized research and graduate education, as well as technology transfer to regional industries;
2. Prepare students for full and ethical participation in a diverse society and encourage lifelong learning;
3. Educate undergraduates in the best practices of the field as well as integrate the latest research into the curriculum;
4. Foster the development of problem solving and communication skills as an integral component of the profession;
5. Provide quality learning experiences through small classes, active learning styles of teaching, and opportunities for meaningful interactions between students and faculty.

Objectives

The Computer Science & Engineering Department has established the following goals for graduates of our program:

1. Our graduates will be equipped with the knowledge and skills necessary to allow immediate employment as computer science and engineering professionals or to secure admission to graduate programs.
2. Our graduates will be prepared to function ethically and responsibly as full participants in our profession and our society.
3. Our graduates will have a thorough knowledge of the basic principles and practices of computing grounded upon the solid foundation of the principles of mathematics and science.
4. Our computer engineering graduates will have a thorough knowledge of the basic principles and practices of engineering based upon a solid foundation of mathematics and science and an ability to apply these principles in the computing domain.
5. Using their knowledge of basic computing principles, our computer science graduates will have acquired a knowledge of major areas of application of those fundamentals.
6. Our information systems graduates will combine a thorough knowledge of basic business principles with the core principles of computing to achieve an understanding of applications at the convergence of these domains.

Departmental Policies
In addition to the College's graduation requirements, the department has the following policies:
1. Mandatory academic advising of students for each term.
2. Exit interviews as a graduation requirement.
3. In addition to the College's graduation requirements, the department has the policy of not accepting any D grade in department courses.

Four-Year Curriculum in Computer Science

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:
If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university's entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of "C" is the minimum acceptable grade.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

COP XXXX* 3
MAC X311 4
MAC X312 4
PHY X048/X048L 4
PHY X049/X049L 4
or
PHY X049C 4

Natural Sciences: XXX XXXXX** 6

Semester I
MAC 2281 Engineering Calculus I 4
ENC 1101 Composition I 3
EGN 3000 Foundations of Engineering 1
Science Elective 3
Social Science Elective 3
Total 14

Semester II
MAC 2282 Engineering Calculus II 4
PHY 2048 General Physics I 3
PHY 2048L General Physics I Lab 1
ENC 1102 Composition II 3
Historical Perspectives Elective 3
Total 14

Semester III
MAC 2283 Engineering Calculus III 4
PHY 2049 General Physics II 3
PHY 2049L General Physics II Lab 1
COP 2510 Programming Concepts 3
Science Elective 3
Total 14

Semester IV
CDA 3103 Computer Organization 3
COT 3100 Intro Discrete Structures 3
COP 3514 Program Design 3
Historical Perspectives Elect 3
Total 12

Summer Semester
EEL 4851 Data Structures 3
CDA 3201 Computer Logic Design 3
CDA 3201L Computer Logic Design Lab 1
EGN 4450 Linear Systems 2
Total 9

Semester V
CDA 4205 Computer Architecture 3
COP 4600 Operating Systems 3
COT 4400 Analysis of Algorithms 3
STA 4442 Introduction to Probability 3
Social Science Elective 3
Total 15

Semester VI
CSE Theory Elective 3
CSE Software Elective 6
CSE Elective 3
ENC 3211 Communication for Engineers 3
Total 15

Semester VII
Fine Arts Elective 3
ALAMEA Elective 3
CSE Elective 6
Total 15

Semester VIII
CIS 4250 Ethical Issues (6A MW/MI) 3
Upper Level Humanities, Social Science or Fine Arts Elective 3
CSE Elective 6
Total 12

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC3211 and CIS4250 or by completing an AA degree at a Florida Community College. Exit Requirements in Major Works/Major Issues (MW/MI) and Literature and Writing (L&W) are fully met through ENC3211 and CIS4250.
Four-Year Curriculum in Computer Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:
If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Communications:
- ENC 1101/1102 English I and II (6)

Humanities & Social Sciences:
- Humanities Courses (6)
- Social Science Courses (6)
- Humanities or Social Sciences (3)

Mathematics:
- USF C/C
- MAC 2281 MAC 2311* (4)
- MAC 2282 MAC 2312* (4)
- MAC 2283 MAC 2313* (4)
- MAP 2302 MAP 2302 (3)
 *or MAC 2281, MAC 2282, MAC 2283

Natural Sciences:
- USF C/C
- CHM 2045 CHM 1045* (3)
- PHY 2048 PHY 2048 (3)
- PHY 2049 PHY 2049 (3)
- PHY 2049L PHY 2049L (1)
 *or CHS 1440 Chemistry for Engineers

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Computer Engineering Admissions Requirements
Transfer students must have completed the equivalent USF Composition I & II, Engineering Calculus I & II and General Physics I & II (with labs) with an overall grade point average of 3.00 or higher in these courses to be admitted to the department. Continuation in the major requires successful completion of COP 2510, CDA3103 and COP3514 with the required grades.

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING

The schedule that follows indicates how a diligent student who can devote full time to coursework can satisfy requirements in four academic years. Students without a solid foundation or those who cannot devote full time to academics should plan a slower pace.

Semester I
- MAC 2281 Engineering Calculus I
- ENC 1101 Composition I
- EGN 3000 Foundations of Engineering
- CHM 2045 General Chemistry I
- CHM 2045L General Chemistry I Lab
- Social Science Elective
- Total: 15

Semester II
- MAC 2282 Engineering Calculus II
- ENC 1102 Composition II
- PHY 2048 General Physics I
- PHY 2048L General Physics I Lab
- Historical Perspectives Elective
- Total: 14

Semester III
- MAC 2283 Engineering Calculus III
- PHY 2049 General Physics II Lab
- COP 2510 Programming Concepts
- EGN 3613 Engineering Economy
- Total: 14

Semester IV
- CDA 3103 Computer Organization
- COT 3100 Intro Discrete Structures
- COP 3514 Program Design
- Historical Perspectives Elective
- MAP 2302 Differential Equations
- Total: 15

Summer Semester
- CDA 3201 Logic Design
- EEL 4851 Data Structures
- EGN 4450 Linear Systems
- Total: 9

Semester V
- CDA 4205 Computer Architecture
- COP 4600 Operating Systems
- EEL 3420 Electronic Materials
- EGN 3373 Electrical Systems I
- CSE Theory Elective
- Total: 15

Semester VI
- CSE Elective
- Social Science Elective
- Science Elective
- CSE Hardware Elective
- Total: 16

Semester VII
- CSE Elective
- EGN 3443 Engineering Statistics
- ALAMEA Elective
- Fine Arts Elective
- Total: 12

Semester VIII
- CIS 4910 Senior Project
- CIS 4250 Ethical Issues (6A MW/MI)
- ENC 3211 Communication For Engineers (6A L&W)
- CSE Elective
- Total: 15

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC3211 and CIS4250 or by completing an AA degree at a Florida Community College. Exit Requirements in Major Works/Major Issues (MW/MI) and Literature and Writing (L&W) are fully met through ENC3211 and CIS4250.
Four-Year Curriculum in Information Systems

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:

If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

COP XXXX* 3
MAC X311 4
MAC X312 4
PHY X048/X048L 4
PHY X049/X049L 4
or
PHY X049C 4

*Programming in Ada, C, C++, or PASCAL or equivalent language.

Natural Sciences:

XXX XXXX** 6

**Two (2) science courses for science majors.

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Information Systems Admissions Requirements

Transfer students must have completed the equivalent USF Composition I & II, Engineering Calculus I & II and General Physics I & II (with labs) with an overall grade point average of 3.00 or higher in these courses to be admitted to the department. Continuation in the major requires successful completion of COP 2510, CDA 3103 and COP 3514 with the required grades.

BACHELOR OF SCIENCE IN INFORMATION SYSTEMS

The schedule that follows indicates how a diligent student who can devote full time to coursework can satisfy requirements in four academic years. Students without a solid foundation or those who cannot devote full time to academics should plan a slower pace.

<table>
<thead>
<tr>
<th>Semester I</th>
<th>Semester II</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2281/2241 Calculus I 4</td>
<td>MAC 2282/2242 Calculus II 4</td>
</tr>
<tr>
<td>ENC 1101 Composition I 3</td>
<td>ENC 1102 Composition II 3</td>
</tr>
<tr>
<td>Science Elective 3</td>
<td>PHY 2048/2053 Physics I 3</td>
</tr>
<tr>
<td>Social Science Elective 3</td>
<td>PHY 2048L/2053L Physics I Lab 1</td>
</tr>
<tr>
<td>Total 13</td>
<td>Historical Perspective Elective 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester III</th>
<th>Semester IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC 2021 Accounting I 3</td>
<td>CDA 3103 Computer Organization 3</td>
</tr>
<tr>
<td>COP 2510 Programming Concepts 3</td>
<td>COT 3100 Intro Discrete Structures 3</td>
</tr>
<tr>
<td>EGN 4450 Linear Systems 2</td>
<td>COP 3514 Program Design 3</td>
</tr>
<tr>
<td>PHY 2049/2054 Physics II 3</td>
<td>Social Science Elective 3</td>
</tr>
<tr>
<td>PHY 2049L/2054L Physics II Lab 1</td>
<td>Historical Perspectives Elective 3</td>
</tr>
<tr>
<td>ECO 2013 Macroeconomics 3</td>
<td>Total 15</td>
</tr>
<tr>
<td>Total 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester V</th>
<th>Semester VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 2023 Intro to Statistics 3</td>
<td>CEN 4022 Software System Development 3</td>
</tr>
<tr>
<td>COP 4600 Operating Systems 3</td>
<td>EGN 3613 Engineering Economy 3</td>
</tr>
<tr>
<td>CEN 4020 Software Engineering 3</td>
<td>Science Elective 3</td>
</tr>
<tr>
<td>MAN 3025 Principles of Management 3</td>
<td>CSE Software Elective 3</td>
</tr>
<tr>
<td>CSE Theory Elective 3</td>
<td>CSE Elective 3</td>
</tr>
<tr>
<td>Total 15</td>
<td>Total 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VII</th>
<th>Semester VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAMEA Elective 3</td>
<td>ENC 3211 Communication for Engineers 3</td>
</tr>
<tr>
<td>CSE Software Elective 6</td>
<td>CIS 4250 Ethical Issues (6A MW/MI) 3</td>
</tr>
<tr>
<td>CSE Elective 3</td>
<td>CSE Electives 6</td>
</tr>
<tr>
<td>Total 12</td>
<td>Total 12</td>
</tr>
</tbody>
</table>

Gordon Rule (6A) is fully met through the mathematics courses above, ENC 1101, ENC 1102, ENC 3211 and CIS 4250 or by completing an AA degree at a Florida Community College. Exit Requirements in Major Works/Major Issues (MW/MI) and Literature and Writing (L&W) are fully met through ENC 3211 and CIS 4250.
• ELECTRICAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Electrical Engineering (B.S.E.E.)

Graduate Degrees Offered:
Master of Science in Electrical Engineering (M.S.E.E.)
Master of Engineering (M.E.)
Master of Science in Engineering (M.S.E.)
Master of Science in Engineering Science (M.S.E.S)
Doctor of Philosophy in Electrical Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers study in all areas fundamental to Electrical Engineering and the electrical sciences: circuit analysis and design, electronics, communications, electromagnetism, controls, solid state, system analysis, digital circuit design and microelectromechanical systems (MEMS). Basic concepts are augmented with well-equipped laboratories in circuits, electronics, digital systems, microwave techniques, wireless circuits & systems, and controls and communications. In addition, a general-purpose computer facility, a microprocessor and digital signal processing laboratory, and a microelectronics fabrication, design/test and metrology laboratory are available to undergraduate and graduate students.

Mission Statement
The mission of the Electrical Engineering Department at the University of South Florida is to provide internationally recognized educational programs; to conduct and disseminate internationally recognized research benefiting humanity; to provide service to society; and to emphasize the need for lifelong learning, ethical conduct and an understanding of the diverse social context in which engineering is practiced.

Objectives
The Department objectives are to produce graduates
1. with the knowledge and skills necessary to practice Electrical Engineering successfully.
2. who can pursue advanced topics through graduate or professional studies.

Students pursuing the Bachelor of Science in the Electrical Engineering program take designated coursework in network analysis, electronics, communications, electromagnetic theory, control systems, microelectronics and microprocessors. This coursework is supplemented by electives in many specialized areas of electrical engineering.

Students completing this program normally pursue industrial careers in electronics, communications, power and controls, digital systems, microelectronics, and information systems. The electrical graduate may apply his/her knowledge to such diverse areas as wireless and satellite communications, remote guidance, MEMS, sensing technology, systems integration, automation, computer and information systems, electronic power generation and transmission, electrically propelled transportation, etc. The graduate may do this by performing needed engineering functions related to research and development (often requires an advanced degree), design, production, operation, sales, or management of these products/services.

Departmental Policies
In addition to the College’s graduation requirement, the department has the following policies:
1. Mandatory academic advising of students for each term.
2. Exit interviews as a graduation requirements.
3. Students must pass all required BSEE courses, except humanities and social sciences, with a grade of "C" or better.

Four-Year Curriculum in Electrical Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:
If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Communications:
ENC 1101/1102 English I and II (6)

Humanities & Social Sciences:
Humanities Courses (6)
Social Science Courses (6)
Humanities or Social Sciences (3)

Mathematics:
USF C/C
MAC 2281 MAC 2311* (4)
MAC 2282 MAC 2312* (4)
MAC 2283 MAC 2313* (4)
MAP 2302 MAP 2302 (3)

Or:
MAC 2281, MAC 2282, MAC 2283

Natural Sciences:
USF C/C
CHM 2045 CHM 1045* (3)
CHM 2045L CHM 1045L* (1)
PHY 2048 PHY 2048 (3)
PHY 2048L PHY 2048L (1)
PHY 2049 PHYS 2049 (3)
PHY 2049L PHYS 2049L (1)

*or CHS 1440 Chemistry for Engineers

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Electrical Engineering Admissions Requirements
Transfer students must have completed the equivalent USF Engineering Calculus sequence with a 2.0 GPA; must have completed one year of equivalent USF General Physics and Chemistry courses with a minimum of 2.0 GPA; must have an overall GPA of 2.0 or better.

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

The schedule that follows indicates how a diligent student who can devote full time to coursework can satisfy requirements in four academic years. Students without a solid foundation or those who cannot devote full time to academics should plan a slower pace.

Semester I

ENC 1101 Composition I 3
MAC 2281 Engineering Calculus I 4
Social Science Elective 3
Fine Arts Elective 3
EGN 2082 History of Electrotechnology (or other Historical Perspectives elective) 3
Total 16
<table>
<thead>
<tr>
<th>Semester II</th>
<th>Eagle Core Curriculum</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1102 Composition II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHY 2048 Physics I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHY 2048L Physics Lab I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHM 2045 Chemistry I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHM 2045L Chemistry Lab I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester III</th>
<th>Eagle Core Curriculum</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2283 Engineering Calculus III</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHY 2049 Physics II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHY 2049L Physics Lab II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EGN 3443 Engineering Statistics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EGN 3613 Engineering Economy I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester IV</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP 2302 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3420 Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3373 Electrical Systems I</td>
<td>3</td>
</tr>
<tr>
<td>EEL 2161 EE Computing Methods</td>
<td>3</td>
</tr>
<tr>
<td>EEL 3420 Electronic Materials</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Term</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 2031 History of Technology or other Historical Perspectives elective</td>
<td>3</td>
</tr>
<tr>
<td>EEL 4030 Electrical Systems Environments</td>
<td>3</td>
</tr>
<tr>
<td>ENC 3211 Communications for Engineers (6A L&W)</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester V</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL 3100 Network Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EEL 4705 Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>EEL 4705L Logic Lab (Circuits)</td>
<td>1</td>
</tr>
<tr>
<td>EEL 3301L Lab I (Electrical)</td>
<td>1</td>
</tr>
<tr>
<td>EEL 4471 Electromagnetics</td>
<td>3</td>
</tr>
<tr>
<td>EEL 4351C Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VI</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL 4102 Linear Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EEL 3375 Indus. Mach. & Power Applications</td>
<td>3</td>
</tr>
<tr>
<td>EEL 4744 Microprocessors</td>
<td>4</td>
</tr>
<tr>
<td>EEL 4743L Microprocessor Lab</td>
<td>1</td>
</tr>
<tr>
<td>EEL 3302 Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>ELR 4316 Wireless Circuits & Systems Lab</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VII</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL 4906 Prof. Issues & Eng. Design (MW/MI)</td>
<td>3</td>
</tr>
<tr>
<td>EEL 3302L EE Lab II (Electronics)</td>
<td>1</td>
</tr>
<tr>
<td>EEL 4657 Linear Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>EEL XXXX Controls Lab</td>
<td>1</td>
</tr>
<tr>
<td>EEL 4301 Electronics II</td>
<td>3</td>
</tr>
<tr>
<td>EEL 4512C Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VIII</th>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL 4914 EE Design Project</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Tech Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Tech Elective*</td>
<td>3</td>
</tr>
<tr>
<td>ALAMEA</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

*Some electives with lab components will incur a lab fee.

Gordon Rule (6A) is fully met through the mathematics courses above, ENC 1101, ENC 1102, ENC 3211 and by selecting one technical or general education elective that is an approved 6A communication course or by completing an AA degree at a Florida Community College. Exit Requirements in Major Works/Major Issues (MW/MI) and Literature and Writing (L&W) are fully met through ENC 3211 and EEL 4906.

INDUSTRIAL AND MANAGEMENT SYSTEMS ENGINEERING

Undergraduate Degree Offered:
- Bachelor of Science in Industrial Engineering (B.S.I.E.)
- Master of Science in Industrial Engineering (M.S.I.E.)
- Master of Engineering (M.E.)
- Master of Science in Engineering Science (M.S.E.S.)
- Master of Science in Engineering Management (M.S.E.M)
- Master of Industrial Engineering (M.I.E.)
- Doctor of Philosophy in Industrial Engineering (Ph.D.)
- Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers study pertinent to the design, evaluation and operation of a variety of industrial systems, ranging from the analysis of public systems to the operation of manufacturing plants. Topics include production planning and control, production and plant design, applied statistics, operations research, human factors and productivity, manufacturing, and automation. The department has excellent laboratory facilities that support class projects and research in microcomputer applications, computer-aided manufacturing, human performance, automation, and applications of robotics. Evening and off-campus programs are available through the Master of Science in Engineering Management (M.S.E.M.) program. The department also administers the manufacturing option in the M.S.E program.

Mission Statement

The Department of Industrial Management Systems Engineering is committed to strong and innovative educational and research programs, economic development, and community initiatives. Our efforts are focused on attracting high-potential students and teaching them to think critically and to communicate effectively. The IMSE department strives for a cutting edge, internationally recognized research program. Our curriculum educates students to work successfully in the global environment and to pursue advanced studies.

Objectives

The objectives of the Department are to:
1. Attract and recruit high quality students;
2. Educate, motivate and serve students with the ultimate goal of preparing them for their professional careers;
3. Engage in an agile and interdisciplinary research program deserving of international recognition that creates significant broader impact in the areas of technology transfer and development of leaders in engineering;
4. Recruit and mentor a diverse faculty with interdisciplinary interests;
5. Develop strong and internationally recognized academic programs in Industrial Engineering and Engineering Management;
6. Engage the alumni in the growth and development of the department;
7. Take a leadership role in providing service to the profession, industry, and society at large.

Departmental Policies

In addition to the College’s graduation requirement, the department has the following policies:
1. Mandatory academic advising of students for each term.
2. Exit interviews as a graduation requirements.
3. All graduating seniors must take the Fundamentals of Engineering Examination.
Four-Year Curriculum in Industrial and Management Systems Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:
If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Communications:
ENC 1101/1102 English I and II (6)

Humanities & Social Sciences:
Humanities Courses (6)
Social Science Courses (6)
Humanities or Social Sciences (3)

Mathematics:
USF C/C
MAC 2281 MAC 2311* (4)
MAC 2282 MAC 2312* (4)
MAC 2283 MAC 2313* (4)
MAP 2302 MAP 2302 (3)

Natural Sciences:
USF C/C
CHM 2045 CHM 1045* (3)
CHM 2045L CHM 1045L* (1)
PHY 2048 PHY 2048 (3)
PHY 2048L PHY 2048L (1)
PHY 2049 PHY 2049 (3)
PHY 2049L PHY 2049L (1)

*or CHS 1440 Chemistry for Engineers

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Industrial Engineering Admissions Requirements
Transfer students must have completed the equivalent USF Engineering Calculus sequence with a 2.0 GPA; must have completed one year of equivalent USF General Physics and Chemistry courses with a minimum of 2.0 GPA; must have a USF and overall GPA of 2.0 or better.

BACHELOR OF SCIENCE IN INDUSTRIAL ENGINEERING

The schedule that follows indicates how a diligent student who can devote full time to coursework can satisfy requirements in four academic years. Students without a solid foundation or those who cannot devote full time to academics should plan a slower pace.

Semester I
CHM 2041 Chemistry I 3
CHM 2045L Chemistry I Lab 1
EGN 3000 Foundations of Engineering 1
ENC 1101 Composition I 3
MAC 2281 Engineering Calculus I 4

Social Science Elective 3
Total 15

Semester II
CHM 2042 Chemistry II 3
EGN 2031 History of Technology (or Historical Perspectives elective) 3
ENC 1102 Composition II 3
MAC 2282 Engineering Calculus II 4
PHY 2048 Physics I 3
PHY 2048L Physics I Lab 1
Total 17

Semester III
EGN 3443 Engineering Statistics 3
MAC 2283 Engineering Calculus III 4
PHY 2049 Physics II 3
PHY 2049L Physics II Lab 1
Historical Perspectives 3
Total 14

Semester IV
EGN 3311 Statics 3
EGN 3373 Electrical Systems Engineering I 3
EGN 4450 Linear Systems 2
MAP 2302 Differential Equations 3
Fine Arts Elective 3
Total 14

Summer Term
EGN 1113 Engineering Graphics 3
EGN 3613 Engineering Economy I 3
ALAMEA Elective 3
Total 9

Semester V
COP 2510 Programming Concepts 3
EGN 3335 Materials Engineering I 3
EIN 4312C Work Analysis 3
EIN 4411 Manufacturing Processes 3
ESI 4312 Deterministic OR 3
Total 15

Semester VI
EGN 3343 Thermodynamics 3
EIN 4333 Production Control 3
ESI 4221 Industrial Statistics/Quality Control 3
ESI 4313 Probabilistic OR 3
Tech Elective Engineering Science 3
Total 15

Semester VII
EIN 4364C Facilities Design I (MW/MI) 3
EIN 4933 Management Cost 3
ESI 4244 Design of Experiments 3
ESI 4523 Industrial Systems Simulation 3
Tech Elective Industrial Engineering 2
Total 14

Semester VIII
EIN 4313C Human Factors (6A) 3
EIN 4365 Facilities Design II 3
EIN 4601 Automation/Robotics 3
ENC 3211 Communication for Engineers (6A L&W) 3
Social Science Elective 3
Total 15

Gordon Rule (6A) is fully met through the mathematics courses above, ENC 1101, ENC 1102, ENC 3211 and EIN 4313 or by completing an AA degree at a Florida Community College. Exit Requirements in Major Works/Major Issues (MW/MI) and Literature and Writing (L&W) are fully met through ENC 3211 and EIN 4364.
• MECHANICAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Mechanical Engineering (B.S.M.E.)

Graduate Degrees Offered:
Master of Mechanical Engineering (M.M.E.)
Master of Science in Mechanical Engineering (M.S.M.E.)
Master of Engineering (M.E.)
Master of Science in Engineering (M.S.E.)
Doctor of Philosophy in Mechanical Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

Coursework includes basic science and mathematics, thermal and fluid sciences, material science, solid mechanics, dynamics, machine design, vibrations, instrumentation and control.

Graduates of this program are employed in research, design, production, marketing, service, installation (contracting), maintenance and operation in such industries as mining, petroleum, paper, food, power, manufacturing, air-conditioning, defense systems, aerospace, data processing, communications, and automotive.

Laboratories are available for basic instrumentation, thermal and fluid sciences, solid mechanics, data acquisition and control, CAD/CAE, vibrations, and aerodynamics.

Students pursuing the Bachelor of Science in Mechanical Engineering program take coursework in thermodynamics and heat transfer, instrumentation and measurements, solid and fluid mechanics, dynamics, machine analysis and design, mechanical design, manufacturing processes, vibrations and controls. This is supplemented by elective coursework in such areas as power plant analysis, refrigeration and air conditioning, mechanical design, advanced mechanics, robotics, propulsion, computer-aided design, manufacturing, bio-engineering, alternative energy, thermal design, composite materials, and aerodynamics.

Graduates of this program are employed in design, manufacturing, contracting, operations, marketing, and management in virtually all segments of industry and government, including, but not limited to: aeronautics, aerospace & propulsion; automotive, internal combustion engines, fuel cells & transportation; propulsion systems; electronic utilities & power generation; heating, ventilation & air conditioning; structures & machinery design; mining & oil exploration; paper, textile, food, & petrochemical industries/processing/manufacturing; micro & nano materials and semiconductors; and biomaterials & bioengineering. There are abundant career opportunities in a wide range of industries because mechanical equipment is required in every aspect of modern industry.

Mission Statement
The Mission of the Mechanical Engineering Department is:
a. to provide a quality undergraduate and graduate education for students entering the mechanical engineering profession or seeking careers in related fields;
b. to advance scientific knowledge through basic and applied research;
c. to disseminate technical information through scholarly publication, conferences and continuing education;
d. to advance the profession through service within the associated societies and;
e. to promote activities which serve global development.

Objectives
The Objectives of the Undergraduate Program in Mechanical Engineering are:
A. to teach students to understand and to apply concepts of basic science, mathematics, computation, and engineering science essential to professional practice;
B. to train students in the design of experiments and testing of systems, in proper instrumentation methods, in the techniques of modern data acquisition and in methods of data interpretation;
C. to develop skills essential to the design process, including problem formulation, synthesis, analysis, construction, testing and evaluation;
D. to develop skills necessary for effective professional interaction including multi-disciplinary collaboration and successful oral and written communication;
E. to encourage an understanding of technology within a global and societal context, the need for continued professional development, the importance of professional responsibility and the ethics of professional practice.

Departmental Policies
In addition to the College's graduation requirement, the department has the following policies:
1. Mandatory academic advising of students for each term, and;
2. Exit interviews as a graduation requirement.
3. Students are strongly encouraged to take the FE Exam.

Four-Year Curriculum in Mechanical Engineering
Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university's entering freshman requirements including ACT or SAT test scores, GPA, and course requirements. Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of "C" is the minimum acceptable grade.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Communications:
ENC 1101/1102 English I and II (6)

Humanities & Social Sciences:
Humanities Courses (6)
Social Science Courses (6)
Humanities or Social Sciences (3)

Mathematics:
USF
MAC 2281 MAC 2311* (4)
MAC 2282 MAC 2312* (4)
MAC 2283 MAC 2313* (4)
MAP 2302 MAP 2302 (3)
*or MAC 2281, MAC 2282, MAC 2283

Natural Sciences:
USF
CHM 2045 CHM 1045* (3)
CHM 2045L CHM 1045L* (1)
PHY 2048 PHY 2048 (3)
PHY 2048L PHY 2048L (1)
PHY 2049 PHY 2049 (3)
PHY 2049L PHY 2049L (1)
*or CHS 1440 Chemistry for Engineers
Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Mechanical Engineering Admissions Requirements
Students entering the Mechanical Engineering department must have completed the equivalent USF Engineering Calculus sequence, one year equivalent USF General Physics and one semester equivalent USF General Chemistry with a minimum of 2.3 GPA; and must have an overall and USF GPA of 2.0 or better.

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

The schedule that follows indicates how a diligent student who can devote full time to coursework can satisfy requirements in four academic years. Students without a solid foundation or those who cannot devote full time to academics should plan a slower pace.

<table>
<thead>
<tr>
<th>Semester I</th>
<th>ENC 1101 Composition I 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2281 Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CHM 2045 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2045L General Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>EGS 1113 Intro. to Design Graphics</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester II</th>
<th>ENC 1102 Composition II 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1102 Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2048 General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2048L General Physics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>Fine Arts Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester III</th>
<th>MAC 2283 Engineering Calculus III 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2283 Engineering Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2049 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2049L General Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>EGN 3311 Statics</td>
<td>3</td>
</tr>
<tr>
<td>EGO 1000 Basic Economics</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester IV</th>
<th>EGN 3321 Dynamics 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 3321 Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3365 Materials Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3373 Electrical Systems I</td>
<td>3</td>
</tr>
<tr>
<td>EML 3035 Programming Concepts for ME</td>
<td>1</td>
</tr>
<tr>
<td>MAP 2302 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Term</th>
<th>EGN 3343 Thermodynamics I 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 3343 Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3443 Engineering Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>EML 3500 Mechanics of Solids</td>
<td>3</td>
</tr>
<tr>
<td>EGN 2031 History of Technology</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester V</th>
<th>EML 3041 Computational Methods 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EML 3041 Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>EML 3701 Fluid Systems</td>
<td>3</td>
</tr>
<tr>
<td>EML 3762 Kinetics and Dynamics of Machinery</td>
<td>3</td>
</tr>
<tr>
<td>ENC 3211 Communication for Engineers (6A L&W)</td>
<td>3</td>
</tr>
<tr>
<td>EGN 4366 Materials Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>
Electrical Engineering

Industrial and Management Systems

Mechanical Engineering