The mission of the USF College of Engineering is to continuously aspire to excellence in teaching, research and public service. The College values academic excellence, professionalism, ethics and cultural diversity among its students, staff and faculty. The College is committed to addressing the needs of its constituencies and gives careful consideration to the urban and suburban populations in our service area.

At the undergraduate level the College is committed to provide students with a strong, broad-based, fundamental engineering education as preparation for careers in industry in a global environment, and government, or as preparation for advanced studies in professional schools of engineering, science, law, business and medicine.

At the graduate level students work in close collaboration with faculty, pursuing advanced topics within their disciplines, which will result in advancements in their fields and society at large.

Utilizing the expertise of its individual and collective faculty, the College is dedicated to the development of new fundamental knowledge and processes or procedures, which will benefit all humanity. The College promotes multi-disciplinary approaches, commitment to life-long learning and awareness of societal issues, which are requisite for meeting technological challenges.

The College provides technical assistance and technology transfer to the region, state and nation. In all facets of teaching, research and service, the College emphasizes close liaisons with industry and government to provide students and faculty with the skills and perspectives needed to ensure effective technological leadership.

DEPARTMENTS AND PROGRAMS

The College of Engineering offers undergraduate and graduate programs to prepare students for a broad spectrum of professional careers in engineering. Laboratory experience as well as real-world participation in technological problem solving is a key aspect of a professional engineer’s college education. The College of Engineering, in implementing this need, augments modern laboratory and research facilities in close collaboration with the professional societies and the many industries in the metropolitan Tampa Bay area. The College of Engineering offers undergraduate degrees in Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Information Systems, Electrical Engineering, General Engineering, Industrial Engineering, and Mechanical Engineering. In addition, the College offers a minor in Biomedical Engineering and several certificate programs offering additional specialization expertise in a related or cross disciplinary area.

The engineering programs of the College have been developed with an emphasis on three broad aspects of engineering activity: design, research, and the operation of complex technological systems. Students who are interested in advanced design or research should pursue the 5-Year Program leading to a Master of Science degree in a designated Engineering discipline. The Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology, Inc. (ABET) has accredited the Engineering programs of the College (Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Industrial Engineering and Mechanical Engineering). The Bachelor of Science program in Computer Science is accredited by the Computing Accreditation Commission (CAC) of ABET.

The supervision of the academic programs is the function of the administrative departments together with several coordinators. Each department is responsible for specific professional programs, faculty, laboratories, and student advising.

The Departments and Programs section that follows contains descriptions of the engineering degrees offered by the College. The “Four Year Programs” section includes courses students need to take, beginning with the freshman year, to earn the Bachelor of Science degree.

Students interested in particular programs offered by the College of Engineering should direct their inquiries to the College of Engineering Office of Student Services (see Advising section below). Information is also available on the College’s website: http://www.eng.usf.edu/.

PROFESSIONAL ENGINEERING

The College of Engineering recognizes that modern engineering solutions draw on knowledge of several branches of engineering. It also recognizes that future technological and societal developments will lead to shifting of the relative emphasis on various branches of engineering, triggered by new needs or a reassessment of national goals. For this reason the College’s programs include a strong engineering foundation portion, designed to equip the graduating engineer with a broad base of fundamental technical knowledge. To this foundation is added the student’s specialization in sufficient depth to prepare him/her to embark successfully on a professional career.

The Bachelor of Science degrees offered in the various engineering disciplines provide the student a broad education with sufficient technical background to contribute effectively in many phases of engineering not requiring the depth of knowledge needed for advanced design or research. The baccalaureate degree is considered the minimum educational credential for participating in the engineering profession and is the first professional degree. Students interested in design and in research are strongly encouraged to pursue advanced work beyond the baccalaureate at this or other institutions. Today’s engineering professionals value and participate in post baccalaureate study to obtain the information and training necessary to effectively
meet tomorrow’s technological challenges. In order to keep abreast of evolving technologies continuing education is available through formal graduate study, seminars, special institutes, memberships in professional organizations and other structured educational opportunities. Life-long learning is a fact in engineering practice and graduates must be committed to it.

The Bachelor of Science degree program in a designated engineering discipline and the Master of Science degree in the same discipline may be pursued simultaneously in a program called the Five-Year Program.

Professional Registration

Students who have attained senior status, and are in good academic standing in an ABET accredited Engineering Program, are eligible to register for examinations leading to licensure as Professional Engineers. The first examination, called the Fundamentals of Engineering (FE) Exam, is offered by the Florida Board of Professional Engineers and is usually taken the semester prior to graduation. In addition to the knowledge acquired through the engineering curriculum, many students take advantage of review courses offered by the College of Engineering’s distance education program, APEX, to prepare for the Fundamentals of Engineering Examination. Registering for the FE exam during the senior year is strongly encouraged for students graduating with an engineering degree.

Preparation for Engineering

Students planning to attend USF’s College of Engineering should familiarize themselves thoroughly with the College’s admissions standards and requirements for their prospective program, which are more stringent than the University’s minimum entrance requirements.

The high school student anticipating a career in engineering should select the strongest academic program available, including four years each of English, mathematics and science (preferably including Chemistry and Physics), as well as full programs in the social sciences and humanities.

Prospective students considering engineering at the University of South Florida who lack certain preparation in high school must elect to follow a program to overcome their deficiencies. Alternatives for these students, classified as “Pre-Engineering majors” might include preparatory coursework at the University of South Florida or the many community colleges that offer the preliminary coursework.

Students planning to transfer to the University of South Florida’s engineering program from a Florida state operated college or university should follow a pre-engineering program leading to an A.A. degree. Transfer students should complete as much of the mathematics and science coursework as is available to them. Junior/community college students intending to pursue an engineering program at USF should contact the advisor at their institution and request a course equivalency list.

In general, engineering courses taken for military training, at the lower level, or as part of an A.S. or technology degree are not transferable to the engineering programs. Transfer students will be held to the same minimum standards of progress and departmental admission requirements as students who entered the University of South Florida as freshmen. These standards are detailed in the University of South Florida Undergraduate Catalog.

The Office of Engineering Student Services will assist prospective transfer students in formulating a sound total program. Interested students should contact the Director of Advising (813/974-2684 or kjohnson@eng.usf.edu) furnishing sufficient details to permit meaningful response.

College Computing Facilities

Centralized computing facilities for undergraduate and graduate students are available in the College. Most engineering departments also provide students with local facilities. The University is an Internet2 site and links are available to directly connect to all major supercomputing centers in the country. Laboratory computers have the necessary software required for coursework as well as other standard productivity software.

Student Computer Recommendations

It is strongly recommended that engineering students obtain a laptop (suggested) or desktop computer prior to the semester in which specialization courses commence. The recommended computer configuration for engineering applications is indicated on the College web page www.eng.usf.edu/. For further details, contact the Associate Dean of Engineering or the Director of Engineering Computing in the College.

Cooperative Education and Internship Programs

A wide variety of industries and government agencies have established cooperative education and internship programs for engineering students to provide them the opportunity to become familiar with the practical aspects of operations, engineering research, and careers. Students in the Career Center’s Cooperative Education (Co-op) program may alternate periods of paid employment in their major field with like periods of study, or may elect to participate in part-time employment while attending classes every semester. Students following the Co-op program usually encounter no problems in scheduling their program, since required Social Science and Humanities, Mathematics and Science, and Engineering Common courses are offered every semester. Students normally apply for participation in this program during their sophomore year and pursue actual Co-op employment during their junior and senior years. The senior year is generally pursued on a full-time study basis, since many
specialization courses are not offered every semester. The students receive a Cooperative Education Certificate upon successful completion of a minimum of two work assignments.

Engineering Students in the University Honors College

Engineering students participating in the University Honors Program are able to complete their Engineering Bachelors degree in four years. Many enter the 5 Year program in the fourth year to pursue the combined Bachelors and Masters programs in Engineering. Students who qualify for the Honors Program at USF should contact the Honors College or Engineering Student Services to learn about the benefits of this prestigious program.

Army, Air Force & Navy R.O.T.C. for Engineering Students

The academic and technological knowledge an engineering degree provides is a distinct advantage to individuals interested in a military appointment or career. This is especially true for those participating in one of the ROTC programs at USF.

Five-Year Programs Leading to the Bachelor and Master of Science Degrees in Engineering

Well qualified students who, at the beginning of their senior year, are clearly interested in graduate study are invited to pursue a Five-Year Program of study leading simultaneously to the Bachelor of Science and Master of Science in Engineering.

Undergraduate Admission to the College of Engineering

Students may apply to the College of Engineering upon initial entry to USF by declaring Engineering as their intended major on their admissions application. Continuing USF students may apply through the Office of Engineering Student Services.

College of Engineering Admission Requirements for First Time in College Students

Students meeting the criteria below are granted direct entry to the College. Those who do not are classified “Pre-Engineering.” Pre-Engineering students are fully admitted to the College after satisfactorily completing Calculus I and II and Physics I and II with labs. Additional requirements must be met prior to admission to specific degree programs.

Freshmen:

a. Test Scores:
 - SAT—combined score of 1150 minimum with a minimum quantitative of 550.
 - ACT—combined score of 25 minimum and mathematics of 25 minimum.

b. High School Mathematics:
 Should include sufficient algebra and trigonometry to enter Engineering Calculus I.

c. High School Grade Point Average of 3.0/4.0.

College of Engineering Admission Requirements for Transfer Students

1. All transfer students must meet the following minimum requirements:
 a. Admitted to USF as a degree seeking student;
 b. Minimum GPA of 2.0 in each of the following categories: overall undergraduate GPA, math and science courses (best attempt), engineering courses; courses within the major;
 c. Must have earned the required grade in math, science and engineering courses in no more than three registered attempts. Grades of W, I, IF, U, R, M, and MF are considered attempts. Registration that is canceled for non-payment is considered an attempt.
 d. Completion of Calculus I and II and Physics I and II, Physics Laboratory I, Physics Laboratory II with minimum grades of C (C- is insufficient).

Transfer students who meet criteria a., b. and c. but not d. will be classified pre-engineering until criteria d. is met. Transfer students who do not meet criteria a, b, or c will not be admitted to the College of Engineering.

2. Florida community college transfer students that have met the minimum criteria above and have completed the courses shown below with the minimum required grades as specified by the Academic Department are accepted directly into the College of Engineering and to the specific program.

 Mathematics:

 USF
 - MAC 2281
 - MAC 2282
 - MAC 2283
 - MAP 2302

 C/C
 - MAC 2311/MAC 2281 (4)
 - MAC 2312/MAC 2282 (4)
 - MAC 2313/MAC 2283 (4)
 - MAP 2302/ MAP X305(3)
Natural Sciences:

USF
- CHM 2045/CHM 2045L
- PHY 2048/PHY 2048L
- PHY 2049/PHY 2049L

C/C
- CHM X045/L or CHM X045C or CHS X440/CHM X045L* (4)
- PHY X048C or PHY X043/X048L (4)
- PHY X049C or PHY X044/PHY X049L (4)

*or CHS X440 if 4 credits with included laboratory

a. Computer Science

Transfer students into the Computer Science program from a Florida community college are not required to have MAP 2302 or the Chemistry course indicated above.

b. Information Systems

Transfer students into the Information Systems program from a Florida community college are not required to have MAP 2302 or Calculus III or the Chemistry course indicated above.

Prospective transfer students may contact the College’s Admission Office (813/974-2684) to request an assessment.

Transfer Credit

The USF College of Engineering will accept transfer credit when appropriate if the transferred course has been passed with a grade of “C” or better. In some cases credit for a course may be granted, but the hours accepted may be less than the hours earned at another school.

While credit work from other institutions may be granted subject to the conditions of the previous paragraph, at least 30 credit hours including a minimum number of semester hours of engineering coursework, specified by the degree-granting department, must be taken at USF to receive the baccalaureate degree.

Transfer credit evaluation is conducted in the Office of Engineering Student Services. Transfer students should be prepared to submit College catalogs and course syllabi from the previous institution if requested.

In general, engineering and technology courses taken at the lower level, at technical schools, or as part of professional or military training, are not applicable to the degree programs of the College of Engineering.

Required Prerequisites for Entering Engineering programs

Once a student has been admitted to the College of Engineering, he/she must then seek admission into one of the academic departments. Departmental admissions requirements vary by program. Students considering transferring to USF should familiarize themselves with the requirements for their intended department as early as possible. Students admitted to the University of South Florida and the College of Engineering must qualify for the program of their choice by completing the courses and successfully meeting the requirements below. Unless otherwise stated, the minimum acceptable grade in math and science prerequisites is a grade of C or higher (C- is insufficient). Minimum acceptable grades for math, science and engineering courses, as they pertain to specific degree programs are defined by the academic departments. Students are strongly encouraged to familiarize themselves with departmental guidelines.

Prior to being admitted to a department, a student may be permitted to take no more than two departmental engineering courses. Once admitted, individual departments may have continuation requirements which specify minimum performance standards in core engineering courses for the discipline which must be met before further registration in the Department is granted.

The Department of Chemical & Biomedical Engineering

Bachelor of Science in Chemical Engineering:

- Completion of
 - MAC2311 or MAC2281, MAC2312 or MAC2282, MAC2313 or MAC 2283
 - PHY2048, PHY2048L, PHY2049, PHY2049L
 - CHM2045, CHM2045L
 - with a minimum grade of C in each course.
- A minimum overall GPA of 2.0
- A minimum USF GPA of 2.0

The Department of Civil and Environmental Engineering

Bachelor of Science in Civil Engineering:

- Completion of
 - MAC2311 or MAC2281, MAC2312 or MAC2282, MAC2313 or MAC 2283
 - PHY2048, PHY2048L, PHY2049, PHY2049L
 - CHM2045, CHM2045L
 - with a 2.3 GPA (based on best attempt) in these prerequisites
- A minimum overall GPA of 2.0
- A minimum USF GPA of 2.0
The Department of Computer Science and Engineering
Bachelor of Science in Computer Engineering and
Bachelor of Science in Computer Science

Admission to the Department as a Pre-CSE student requires
• Completion of
 ENC1101, ENC1102
 MAC2311 or MAC2281, MAC2312 or MAC2282
 PHY2048, PHY2048L, PHY2049, PHY2049L
 with a 3.0 GPA (based on best attempt in these courses) and a minimum grade of “C” in each course (grades of “C-” are insufficient).
• A minimum overall GPA of 2.0
• A minimum USF GPA of 2.0

Admission to one of the three major degree tracks is granted by also meeting the following continuation requirements
• Completion of CDA3103 and COP3514 with a minimum grade of “C”, based on best attempts in each course (“C-” is insufficient).
• A minimum overall GPA of 2.0
• A minimum USF GPA of 2.0

Bachelor of Science in Information Systems

Admission to the Department as a Pre-CSE student requires
• Completion of
 ENC1101, ENC1102
 MAC2311, MAC2281 or MAC2241, MAC2312, MAC2282 or MAC2242
 PHY2048 and PHY2048 or PHY2053 and PHY2053L
 PHY2049 and PHY2049L or PHY2054 and PHY2054L
 with a 3.0 GPA (based on best attempt in these courses) and a minimum grade of “C” in each course (“C-” is insufficient).
• A minimum overall GPA of 2.0
• A minimum USF GPA of 2.0

Admission to one of the three major degree tracks is granted by also meeting the following continuation requirements
• Completion of CDA3103 and COP3514 with a minimum grade of “C”, based on best attempts in each course (grades of “C-” are insufficient).
• A minimum overall GPA of 2.0
• A minimum USF GPA of 2.0

The Department of Electrical Engineering
Bachelor of Science in Electrical Engineering:
• Completion of
 MAC2311 or MAC2281, MAC2312 or MAC2282, MAC2313 or MAC 2283
 PHY2048, PHY2048L, PHY2049, PHY2049L
 CHM2045, CHM2045L
 with a minimum grade of C in each course and a 2.25 GPA based upon all attempts in these courses.
• A minimum overall GPA of 2.0
• A minimum USF GPA of 2.0

The Department of Industrial and Management Systems Engineering
Bachelor of Science in Industrial Engineering:
• Completion of
 MAC2311 or MAC2281, MAC2312 or MAC2282 MAC2313 or MAC 2283
 PHY2048, PHY2048L, PHY2049, PHY2049L
 CHM2045, CHM2045L
 with a minimum grade of C in each course.
• A minimum overall GPA of 2.0
• A minimum USF GPA of 2.0

The Department of Mechanical Engineering
Bachelor of Science in Mechanical Engineering:
• Completion of
 MAC2311 or MAC2281, MAC2312 or MAC2282, MAC2313 or MAC 2283
• A minimum overall GPA of 2.0
• A minimum USF GPA of 2.0

FIVE-YEAR PROGRAMS LEADING TO BACHELORS AND MASTERS DEGREES IN ENGINEERING

Well qualified students who, at the beginning of their senior year, are clearly interested in graduate study are invited to apply to the Five-Year Program leading simultaneously to the Bachelor of Science in Engineering or Engineering Science and Master of Science in Engineering or Engineering Science degrees. The general basis of the five-year program includes:

1. The opportunity of taking some graduate courses during the fourth year and deferring the taking of some senior courses to the fifth year.
2. Up to six credit hours, to be determined by program, may be counted toward both degrees in some degree programs.

Students apply for admission to this program through their departmental advisor. Admissions requirements vary by department.

Applicants must have senior standing (90 credits) with at least 16 upper level engineering credits and must meet or exceed the graduate program entrance requirements of the department.

Engineering Advising

Effective pursuit of engineering and engineering related studies requires careful attention to both the sequence and the type of courses taken. The engineering curriculum differs in key respects from the study plans of other majors—even in the freshman year.

New students must attend the University’s Orientation program. They will be introduced to the engineering advisors during this program and receive advisement for their first semester.

The student and advisors jointly work out a plan of study that meets both the student’s career objectives and the College of Engineering’s degree requirements. The advisors maintain College of Engineering student records.

Students not yet meeting departmental admissions requirements are advised in the office of Engineering Student Services.

While the College provides advising services to assist students with academic planning, the responsibility for seeing that all performance standards and graduation requirements are met rests with the student.

The College of Engineering requires all undergraduates to apply for graduation the semester prior to the anticipated graduation term. Necessary forms and instructions can be obtained in the Engineering Student Services Office or from departmental advisors.

Advising Offices

Tampa Campus: TECO Energy Hall, Room 1302, (813) 974-2684.
Sarasota-Manatee Campus: SMC107, (941) 359-4330.
USF Polytechnic Campus: Student Services Office LTB1139, (863) 667-7000

Preliminary Coursework for Engineering Students

The College of Engineering Bachelor of Science programs are founded on a set of coursework that is designed to give each student a thorough foundation of knowledge on which specialization studies and a professional career can be based. Emphasis is placed on three key elements; development of communication skills, familiarity with the social sciences and humanities and a solid base in science and mathematics.

Each degree-granting department has developed a list of courses to provide key elements for the degree offered. While the specific courses will vary slightly from one department to another, the categories are as follows:

- General Education Courses
- Mathematics, Chemistry and Physics
- Engineering Courses
- Department Specialization
- Students selecting an Engineering major should be aware of specific requirements. Students may consult the College’s Advising Office for detailed information.

The Engineering undergraduate student must not only be a technically competent individual but a person who can understand, adjust and contribute to the social environment.

Students who transfer from a State of Florida community college with an Associate of Arts will find their General Education coursework satisfies the USF General Education Requirements.

All Engineering students must complete the USF Exit Requirements. The Writing Intensive portion can be met by completing ENC 3246 Communication for Engineers. The three-hour Capstone Design requirement is integrated into the senior year curriculum.
1. University Liberal Arts Requirements

All students are required to take 42 semester hours to complete the University liberal arts requirements. Thirty-six (36) semester hours will satisfy the general education course requirements and 6 semester hours will satisfy the exit requirements. These requirements are distributed as follows:

<table>
<thead>
<tr>
<th>General Education Requirements*</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition</td>
<td>6</td>
</tr>
<tr>
<td>Quantitative Methods</td>
<td>6</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>6</td>
</tr>
<tr>
<td>Social and Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>6</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>3</td>
</tr>
<tr>
<td>Human Cultural Diversity and Global Context</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

Exit Requirements* (Must be taken at USF)

| Capstone Design | 3 |
| Writing Intensive Course | 3 |

*Courses may be certified in more than one area, but students may use each course in only one (1) area.

In addition, 12 hours considered Gordon Rule Communication (6A) courses must be completed. For Engineering students, these are ENC 1101, ENC 1102, ENC 3246, and one more. The fourth course is selected from any general education or departmental course that have been certified Gordon Rule Communication (6A) by the USF Undergraduate Council.

2. Mathematics and Science Core Requirements

For students in the engineering programs, the mathematics coursework consists of a Calculus for Engineers sequence (or a calculus sequence of equivalent level), Differential Equations, and additional hours of designated courses supportive of the student’s selected field of specialization, as specified by the department. Science coursework includes the Physics with Calculus sequence and General Chemistry course(s) depending on the degree-granting program.

Students whose high school preparation is insufficient to enter the Calculus for Engineers are required to take supplementary algebra and trigonometry prior to being considered for acceptance into the College.

3. Minimum Acceptable Grade in Required Courses

The minimum acceptable grade in math and science prerequisites is a C (C- is insufficient). The minimum acceptable grade in engineering courses is determined by the academic department. Students are strongly encouraged to familiarize themselves with the math/science GPA required for admission to the intended engineering department as well as the minimum grade required in engineering courses. Grades higher than “C” may be indicated.

Minimum Performance and Graduation Requirements

1. Minimum Requirements

All undergraduate students with a student classification of engineering or pre-engineering must maintain a minimum cumulative GPA of 2.0 in each of the following categories:
In no case will the minimum GPA for a category be less than 2.0.

Students who do not meet the required minimum GPA in each category are ineligible for further registration in the College unless individually designed academic plans to correct their GPA deficiencies are recommended by their academic advisors. Approved plans must include a strategy to eliminate the deficiency in two semesters or less by meeting specific goals. Students who are afforded this opportunity will be closely monitored. Those who, for any reason, fail to meet the terms of their academic plans will be ineligible to declare or continue to declare a major, or intended major, in the College of Engineering and will be ineligible to register for courses that are restricted to engineering students. Engineering and pre-engineering students may request continuation with an academic plan only one time.

All undergraduate students with student classifications of engineering or pre-engineering must earn the required grade in math, science and engineering courses in no more than three registered attempts. Grades of W, I, IF, U, R, M, and MF are considered attempts. Registration that is canceled for non-payment is also considered an attempt. Those who, for any reason, fail to meet this requirement will be ineligible to declare or continue to declare a major, or intended major, in the College of Engineering and will be ineligible to register for courses that are restricted to engineering students.

Students who are ineligible for further registration in the College of Engineering will be provided with a wide range of services to assist them in selecting a new career path. Students who have been academically dismissed from the University of South Florida may choose to attend another institution of higher learning and reapply to USF after thus improving their overall GPA. These returning students will be considered for readmission to the College if they meet the minimum College of Engineering admission requirements for transfer students and the program entrance requirements for their intended major as published in the University of South Florida Undergraduate Catalog in effect during the term of return.

2. English Requirement

Students evidencing an English deficiency will be required to initiate the necessary corrective programs, with the assistance of their advisors. It is recognized that such deficiencies can exist even though a student has met the University's minimum English requirements. Correction of any deficiency must commence the term after a student has been notified and must be completed prior to recommendation of the student for graduation by the faculty of the College.

3. Mathematics Requirement

Students evidencing a lack of the ability to apply mathematics will be required to take remedial coursework beyond their regular degree requirements. Faculty of the College who encounter students deficient in mathematical ability will refer such cases to the Advising Office even if passing grades have been obtained in the math prerequisites for engineering.

4. Residency Requirement

Transfer students must complete a minimum number of specialization courses in the USF degree granting department. The minimum number of USF specialization credit hours required is established by the respective academic department. In no case will this be less than 18 hours. The University residency requirement of 30 USF hours must also be met. General engineering courses are not considered specialization courses.

5. Years to Degree

The College of Engineering requires that a student complete the baccalaureate degree within five years after beginning engineering specialization courses. Specialization courses taken more than five years prior to graduation will not be counted toward the degree. Exceptions may be granted by the Academic Department.

6. Disruption of Academic Process and Academic Dishonesty

The College of Engineering will maintain an environment that encourages all to study and conduct engineering research free from undue disruption. Disruption of the Academic Process is a matter the College is obliged to report to Student Judicial Services. Academic dishonesty, in any form, is taken very seriously by the College of Engineering and will result in sanctions. The most serious penalty is dismissal from the University. (See University policies regarding academic dishonesty.)

7. Grievance Procedure

Students should make themselves fully aware of the University’s grievance procedures. (See University policies regarding grievance procedures.)
8. University, College and Program Requirements
The College requirements described in the section above are in addition to requirements set forth in the University policy and
procedures section and the departmental sections of this catalog. It is the student's responsibility to complete all university,
college, program and curricular requirements prior to graduation.

9. Graduation Application Procedures and Deadlines
Each engineering student is required to complete an application for graduation and check list. Students should schedule
an appointment with the Department Undergraduate Coordinator to review graduation qualifications and obtain departmental
signatures well in advance of the College graduation application deadline. Approved applications must be submitted to the
College of Engineering Advising Office the term prior to the semester in which graduation is sought. Graduation applications
are due on the dates indicated below.

 - August 1st for Fall Graduation
 - November 1st for Spring Graduation
 - April 1st for Summer Graduation

10. Fundamentals of Engineering Examination
Taking the Fundamentals of Engineering Exam prior to graduation is required in some departments and strongly encouraged
in others. (See the Office of Engineering Student Services for applications and information.)

Certificate Programs
Several formalized engineering certificate programs, at the undergraduate and graduate levels, have been developed to
provide qualified individuals an opportunity to enhance their degrees prior to graduation or to engage in discipline related
continuing education.

Certificate in Biomedical Engineering
Biomedical Engineering is a highly interdisciplinary field where basic engineering principles are applied to problems in the
biomedical sciences. Typical specific areas of interest include: understanding basic biochemical and physiological processes,
designing and analyzing medical diagnostics and procedures, evaluation and design of health care systems and facilities,
design and valuation of prosthetic devices, and general biomedical product development. The College of Engineering offers
an undergraduate Enhancement Certificate in Biomedical Engineering. There are two main purposes for the certificate program
1) to accommodate students interested in entering medical school following graduation (this program satisfies most of the typical
minimal admission standards for medical school); and 2) to prepare students for graduate education program, drawing from
all engineering disciplines, biology, physical sciences, biomedical and clinical sciences. Undergraduate students anticipating
graduate studies in the bioengineering area (or related fields such as medicine) are strongly encouraged to gain research
experience as part of their program. Research possibilities exist in Engineering, the Health Sciences Center, Public Health, and
Arts and Sciences.

The Certificate in Biomedical Engineering provides students an opportunity to get an introduction to a rapidly developing field
of study and to receive recognition for their endeavors. Students in the program must fulfill all the requirements for an Engineering
undergraduate degree, such as Bachelor of Science in Chemical Engineering and also meet the additional requirements of
the Certificate program. Enrollment is through the Department of Chemical & Biomedical Engineering.

Certificate in Technology Management
A post baccalaureate student may enhance professional achievement by completing a Certificate in Technology Manage-
ment. The required fifteen (15) semester hours in five (5) courses will enhance students’ ability to succeed in a highly competitive
global environment. This certificate is designed for individuals with technical backgrounds. Qualitative approaches with
quantitative methods are emphasized to strengthen technical credentials and while developing managerial competencies. This
program is offered by the Department of Industrial and Management Systems Engineering on the Tampa Campus or online via
APEX.

Certificate in Total Quality Management
An undergraduate student, or graduate engineer, may enhance professional achievement by receiving a Certificate in Total
Quality Management. The student must satisfactorily complete five courses (15 credit-hours beyond the BS degree) of the eight
courses in Total Quality Management. Courses include Statistical Quality Control, Design of Experiments, Reliability, Total Quality
Management, and Benchmarking. Enrollment is through the Department of Industrial and Management Systems Engineering.

Certificate in Materials Science and Engineering
The Materials Science and Engineering certificate requires 15 credit hours of theoretical and applied materials courses. The
Materials Science and Engineering Certificate is designed to provide students with an opportunity to gain a focused introduction
into a dynamic and explosively growing technological field. The certificate has been designed to be as flexible as possible thus
allowing students from different disciplines to take advantage of the program. Enrollment is through the Department of Chemical & Biomedical Engineering.

Certificate of Wireless Engineering

This Certificate provides post-baccalaureate students with studies in engineering techniques of modern wireless circuits, antennas, and communication systems. Students must have successfully completed an undergraduate course in Electromagnetics. The candidate should also have an earned B.S. in Electrical Engineering or Computer Engineering. Any other degree track must meet the Electrical Engineering department’s approval.

Certificate of Enhancement

The Certificate of Enhancement in (a designated engineering discipline) provides students an opportunity to gain an enhanced experience in their chosen field while pursuing an engineering degree. Each department may offer a certificate of enhancement in the designated discipline. These include the Certificates of Enhancement in Chemical Engineering, Civil & Environmental Engineering, Computer Science, Computer Engineering, Electrical Engineering, Industrial and Management Systems Engineering, Information Systems and Mechanical Engineering. In addition, there are two specialized Certificates of Enhancement in Transportation Engineering and Wireless Engineering.

Requirements:
1. Enrolled in a Bachelor of Science degree program in a specified engineering discipline.
2. A minimum of 15 hours of additional specialization related courses, which have been approved by the department beyond those included as a part of the B.S. degree, from an approved list. Courses must be taken on a letter-grade basis, and a minimum of 9 hours must be College of Engineering courses.
3. A G.P.A. of 2.0 or greater for the additional hours.
4. The student must receive the B.S. degree to receive the Certificate of Enhancement.

Please contact the appropriate department undergraduate coordinator to be accepted in the program.

• CHEMICAL & BIOMEDICAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Chemical Engineering (B.S.C.H.)

Graduate Degrees Offered:
Master of Science in Chemical Engineering (M.S.C.H.)
Master in Chemical Engineering (M.C.H.E.)
Master of Engineering (M.E.)
Master of Science in Engineering (M.S.E.)
Master of Science in Biomedical Engineering (M.S.B.E.)
Doctor of Philosophy in Chemical Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)
Doctor of Philosophy in Biomedical Engineering (Ph.D.)

This department offers coursework and study in all areas fundamental to Chemical & Biomedical Engineering. Engineering specialization courses, together with mathematics, physics, chemistry, other interdisciplinary engineering fundamentals, and liberal arts courses, provide the basis for long-range professional progress. Because of the many professional areas available for employment to the chemical engineer, the students are also required to take a number of electives from areas such as biotechnology, materials, and environmental engineering. These electives are designed to broaden the experience and, therefore, the employment possibilities of our graduates. The Chemical & Biomedical Engineering Department also offers a sequence of courses in chemical engineering science, biotechnology, and biomedical engineering.

A sequence of courses in the engineering aspects of biotechnology is currently available within the Chemical Engineering program. Topics include applied microbiology, fermentation, enzyme technology, cell separation technology, biomedical engineering, biomaterials, biotechnology, and biomechanics.

Students pursuing the Bachelor of Science in Chemical Engineering take coursework in advanced chemistry, thermodynamics, fluids, heat, and mass transfer, numerical methods, separation processes, reacting systems, instrumentation, control, and plant design. Students must also satisfactorily complete a design project as part of their program. Students seeking the Biotechnology/Biomedical Certificate are also required to take additional courses in general biology, microbiology, and biochemistry. Chemical and Biomedical engineering students must maintain a GPA of 2.0 in required departmental courses. Therefore, it is imperative that the students retain close contact with their advisor.

Students completing this program normally initiate their careers in manufacturing, environmental, and biological enterprises. Chemical engineers are found in administrative, technical, and research positions in these industries. Main products of these industries are petrochemicals, polymers, fibers, natural and synthetic fuels, electronic materials, fertilizers, pharmaceuticals, bio-materials, etc.
Solutions of modern societal and scientific problems often require the use of chemical engineering skills. Chemical and biomedical engineering students must have access to a personal computer during their last two years of study. Those who do not own one will be severely disadvantaged.

Mission Statement

The mission of the Department of Chemical & Biomedical Engineering is to prepare graduates with fundamental knowledge and contemporary skills for the development, economic design, and safe operation of chemical and biological systems, processes, products, and methods in a manner compatible with societal values.

Program Education Objectives

1. Demonstrate professional engineering competence by holding positions of increasing responsibility in industry, business, government and/or educational institutions.
2. Publish papers, reports, patents and/or technical presentations at local, national, international meetings or within the professional organization/company that they are affiliated with.
3. Continue to improve their technical skills, knowledge and understanding through continuing education, pursuit of advanced degrees, and/or pursuit of professional license in their chosen profession.

Departmental Policies

In addition to the College’s graduation requirements, the department has the following policies:
1. Mandatory academic advising of students for each term.
2. Exit interviews as a graduation requirement.
3. Many courses required for the BS degree in Chemical Engineering have other pre-requisite courses. Pre-requisite courses must be completed with a C- or better before the student is allowed to take a course. This applies to pre-requisite courses taken in other departments as well. The only exceptions are the Admissions Requirements courses listed below, which must be passed with a grade of C or better.

Four-Year Curriculum - Chemical Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College:

If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the University’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade.

Chemical & Biomedical Engineering Admissions Requirements

Students must have completed the equivalent USF Engineering Calculus General Physics and Chemistry courses with a C or better in each course; must have a USF and an overall GPA of 2.0 or better.

Chemical Engineering (ECH), BSCH, 131 – TAPS Plan

The curricula and courses presented below are a guide for remaining on track towards the bachelor’s degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester - Year 1</td>
<td>CHM 2045</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHM 2045L</td>
<td>General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENC 3000</td>
<td>Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENC 1101</td>
<td>Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2281</td>
<td>Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>XX Fine Arts Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX</td>
<td>Human Cultural Diversity and Global Context Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester - Year 1</td>
<td>CHM 2046</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHM 2046L</td>
<td>General Chemistry II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENC 1102</td>
<td>Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2282</td>
<td>Engineering Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 2048</td>
<td>General Physics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 2048L</td>
<td>General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Fall Semester - Year 2</td>
<td>EGN 3443</td>
<td>Engineering Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2283</td>
<td>Engineering Calculus III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 2049</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 2049L</td>
<td>General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX</td>
<td>Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX</td>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring Semester - Year 2</td>
<td>ECH 3023C</td>
<td>Material and Energy Balance</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EGN 3343</td>
<td>Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGN 3433</td>
<td>Modeling and Analysis of Engineering Systems (or MAP 2302 Differential Equations)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENC 3246</td>
<td>Communication for Engineers (WI)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Summer Term - Year 2</td>
<td>CHM 2210</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHM 2210L</td>
<td>Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX</td>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX</td>
<td>Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Fall Semester - Year 3</td>
<td>ECH 4123</td>
<td>Chemical Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECH 4264</td>
<td>Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECH 4845</td>
<td>Numerical Methods in Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX</td>
<td>Department Upper-Level Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Spring Semester - Year 3</td>
<td>CHM 2211</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHM 2211L</td>
<td>Organic Chemistry II Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ECH 3702</td>
<td>Instrument Systems I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECH 4265C</td>
<td>Mass Transfer Operations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BME 4406</td>
<td>Engineering of Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Fall Semester - Year 4
- ECH 3242L Chemical Engineering Lab I 3
- ECH 4415C Reaction Engineering 4
- ECH 4605 Product and Process Systems Engineering 3
- EMA 4003 Introduction to Materials Science 3
- XXX XXXX Department Upper-Level Elective 3
- **Total 16**

Spring Semester - Year 4
- ECH 4243L Chemical Engineering Laboratory II 3
- ECH 4323C Process Dynamics and Control 3
- ECH 4615 Product and Process Design 3
- XXX XXXX Department Upper-Level Elective 3
- **Total 12**

TOTAL CREDIT HOURS TO DEGREE 131

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC 3246 and by selecting one technical or general education elective that is an approved 6A communication course or by completing an AA degree at a Florida Community College.

The writing intensive and capstone design exit requirements are fully met through ENC3246 and ECH4615.

Biomedical Engineering Minor

This biomedical engineering minor is a 15 credit hour program that is open to all engineering majors and other students that meet the prerequisites listed below. For engineering majors, at least 9 hours beyond the B.S. in any Engineering discipline must be completed for the biomedical engineering minor. Student must register with the Department of Chemical & Biomedical Engineering undergraduate advisor prior to starting this minor program. Departments within the College of Engineering are currently developing additional courses that will be added to the list of courses that can be applied to this minor, so consultation with the advisor will insure that students are informed of all offered courses.

Prerequisite courses:
1. Biology I: BSC 2010
2. Calculus II: MAC 2282, MAC 2242, MAC 2233 or MAC 2312
3. Physics II: PHY 2049 or PHY 2054
4. General Chemistry II: CHM 2046

Required Courses (6 hours)
- ECH 4931 Special Topics in Chemical Engineering* 3
- BME 4406 Engineering of Biological Systems 3

The remaining 9 credit hours can be taken from the following list:
- ECH 6417 Bioseparations 3
- ECH 4931 Special Topics in Chemical Engineering** 3
- PHZ 4702 Applications of Physics to Biology & Medicine I 4
- PHZ 4703 Applications of Physics to Biology & Medicine II 4
- BCH 3023 Introductory Biochemistry 3
- EIN 4313C Human Factors 3
- BME 5006 Theory and Design of Bioprocesses 3
- EIN 5245 Work Physiology/Biomechanics 3
- BME 5040 Pharmaceutical Engineering 2
- ECH 5748 Selected Topics in Biomedical Engineering**1,10 3
- BME 5748 Selected Topics in Biomedical Engineering ** 3

*Please see academic advisor for required special topics courses.
**Please see academic advisor for selected special topics courses.
• CIVIL AND ENVIRONMENTAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Civil Engineering (B.S.C.E.)

Graduate Degrees Offered:
Master of Science in Civil Engineering (M.S.C.E.)
Master of Science in Engineering (M.S.E.)
Master of Science in Environmental Engineering (M.S.E.V.)
Master of Civil Engineering (M.C.E.)
Master of Engineering (M.E.)
Master of Environmental Engineering (M.E.V.E.)
Doctor of Philosophy in Civil Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers course work and study pertinent to Civil Engineering, Engineering Mechanics, Material Science, and Environmental Engineering. Areas of concentration are Environmental/Water Resources Engineering; Structures/Materials/Geotechnical Engineering; and Geotechnical/Transportation Engineering.

Students completing the program may enter the profession as engineers in civil, structural, geotechnical, transportation, water resources, environmental, hydraulics, or materials disciplines. All of these disciplines share the need for knowledge in the areas of engineering mechanics, civil engineering, material science, and environmental engineering. Through choice of the proper area of concentration, a student has the opportunity to channel academic studies specifically towards his/her career choice.

Graduates of the program may commence their engineering careers in either industry, engineering consulting firms, or public service at the federal, state, or local level. Initial assignments may include planning, design and implementation of water resources systems; planning and design of transportation and housing systems; regional planning, design, and management for abatement of air, water and solid waste pollution problems; design of bridges and single and multistory structures; and supervision of construction projects.

Mission Statement
The Civil Engineering Program of the Department of Civil and Environmental Engineering at the University of South Florida will provide undergraduate students with strong, broad-based, engineering education which gives them the basic intellectual and organization skills that allow them to work with complex systems with technological, social and environmental components. As many of the Program’s graduates begin work upon graduation in industry or with governmental organizations, the curriculum is designed to prepare students for these roles by requiring a number of courses in the various fields of civil engineering and by providing limited specialization in one given area. The curriculum is designed to encourage lifelong learning and to prepare students for undertaking advanced studies in engineering or in other professional areas.

Program Educational Objectives Associated with the Mission Statement

The program and curriculum of the Department of Civil and Environmental Engineering are designed to meet the needs of all students within the context of its Mission Statement. The Program Educational Objectives associated with the Department’s Mission Statement are:

1. The Civil Engineering Program at the University of South Florida has as a program educational objective that graduates, within 3-6 years after graduation, can obtain positions in civil engineering firms or government agencies where they
 • deal effectively with clients, the public, or other engineering groups,
 • communicate effectively with co-workers and the public, and
 • are effective members of teams involved in the design and/or construction of civil engineering projects.

2. The Civil Engineering Program at the University of South Florida has as a program educational objective that graduates, within 3-6 years after graduation, are continuing their professional development by extending their professional knowledge through independent learning, continuing educational courses, conferences, workshops, short courses, and/or graduate study.

3. The Civil Engineering Program at the University of South Florida has as a program educational objective that graduates, within 3-6 years after graduation, that are working in engineering related public or private organizations encouraging professional registration will have made appropriate progress towards achieving that registration.

Concentrations
In addition to designated common coursework in engineering mechanics, civil, and environmental engineering, students undertake a concentration of 18 hours of coursework plus a 4-hour capstone design course.

Departmental Policies
In addition to the College’s graduation requirements, the Department has the following policies:
All students must:
1. Participate in mandatory advising prior to each term;
2. Participate in Department assessment activities and successfully complete an exit interview before graduating;
3. Maintain a C- or better in EGN 3311 Statics; EGN 3331 Mechanics of Materials; EGN 3353 Basic Fluid Mechanics; and EGN 3365 Materials Engineering to continue in the program, including a 2.5 GPA (best attempt) in all these courses;
4. Earn a C- or better in all engineering courses used to meet graduation requirements;
5. Consider the advice of the college to complete and pass the Fundamentals of Engineering Exam (F.E. Exam).

Four-Year Curriculum - Civil Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of "C" is the minimum acceptable grade.

Students qualify for direct entry to their intended department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all of the other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university. The following are transferable courses from the Community College that will be accepted in the Math/Science/Engineering areas:

Mathematics:

USF C/C
MAC 2281
MAC 2282
MAC 2283
MAP 2302

C/C
MAC 2311/MAC 2281 (4)
MAC 2312/MAC 2282 (4)
MAC 2313/MAC 2283 (4)
MAP 2302/MAP X305(3)

Natural Sciences:

USF C/C
CHM 2045/CHM 2045L
CHM 2046/CHM 2046L
PHY 2048/PHY 2048L
PHY 2049/PHY 2049L

C/C
CHM X045/L or CHM X045C or CHS X440/CHM 045L (4)
CHM X046/L or CHM 046C
PHY X048C or PHY X043/X048L (4)
PHY X049C or PHY X044/PHY X049L (4)

Please be aware of the immunization, foreign language, and continuous enrollment policies of the university, as well as the qualitative standards required.

Civil and Environmental Engineering Admissions Requirements

Students entering the Civil & Environmental Engineering department must have completed the equivalent USF Engineering Calculus sequence, one year equivalent USF General Physics and one semester equivalent USF General Chemistry with a minimum of 2.3 GPA; and must have an overall and USF GPA of 2.0 or better.

Continuation Requirements

Continuation in the Civil & Environmental Engineering program requires a minimum grade of C- as well as a 2.5 GPA (based on best attempt) over the following courses:

EGN 3311 - Statics
EGN 3331 - Mechanics of Materials
EGN 3353 - Basic Fluid Mechanics
EGN 3365 - Materials Engineering I

Civil Engineering (ECE), BSCE, 131 – TAPS Plan

The curricula and courses presented below are a guide for remaining on track towards the bachelor’s degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.

Fall Semester - Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2045L General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
</tbody>
</table>
Spring Semester - Year 1
- CHM 2046 General Chemistry II
 3
- EGS 1113 Introduction to Design Graphics
 3
- ENC 1102 Composition II
 3
- MAC 2282 Engineering Calculus II
 4
- PHY 2048 General Physics I
 3
- PHY 2048L General Physics I Laboratory
 1

 Total
 17

Fall Semester - Year 1
- MAC 2281 Engineering Calculus I
 4
- XXX XXXX Social & Behavioral Sciences Elective
 3

 Total
 15

Spring Semester - Year 2
- EGN 3311 Statics
 3
- XXX XXXX Humanities Elective
 3
- MAC 2283 Engineering Calculus III
 4
- PHY 2049 General Physics II
 3
- PHY 2049L General Physics II Laboratory
 1
- EGN4427 Numerical methods and Programming for Civil Engineers
 3

 Total
 17

Fall Semester - Year 2
- EGN 3321 Dynamics
 3
- CGN4933 Computer Skills for Professional Practice
 3
- EGN 3331 Mechanics of Materials
 3
- EGN3331L Mechanics of Materials Lab
 1
- EGN 3353 Basic Fluid Mechanics
 3
- MAP 2302 Differential Equations (or EGN 3433 Modeling and Analysis of Engineering Systems)
 (Note: EGN 3433 is not a 6AM course)
 3

 Total
 16

Summer Term - Year 2
- EGN 3615 Engineering Economics with Social and Global Implications
 3
- ENC3246 Communications for Engineers (WI)
 3
- XXX XXXX Human Cultural Diversity and Global Context
 3

 Total
 9

Fall Semester - Year 3
- EGN 3365 Materials
 3
- EGN 3343 Thermodynamics
 3
- EGN 3443 Probability and Statistics for Engineers
 3
- ENV 4001 Environmental Systems Engineering
 3
- TTE 4004 Transportation Engineering I
 3

 Total
 15

Spring Semester - Year 3
- CES 3102 Structures I
 3
- CWR 4202 Hydraulics
 3
- EGN 3373 Introduction to Electrical Systems I
 3
- ENV 4004L Environmental/Hydraulics Engineering Lab
 1
- XXX XXXX Department Upper-Level Elective (CE Concentration Elective)
 3
- XXX XXXX Humanities Elective
 3

 Total
 16
Fall Semester - Year 4
CEG 4011 Geotechnical Engineering I 3
CEG 4011L Geotechnical/Transportation Laboratory 1
XXX XXXX Department Upper-Level Elective (CE Concentration Elective) 3
XXX XXXX Fine Arts Elective 3
XXX XXXX Department Upper-Level Elective (CE Concentration Elective) 3
Total 13

Spring Semester - Year 4
XXX XXXX Exit CE Capstone Design Requirement 4
XXX XXXX Social and Behavioral Sciences Elective 3
XXX XXXX Department Upper-Level Elective (CE Concentration Elective) 3
XXX XXXX Department Upper-Level Elective (CE Concentration Elective) 3
Total 13

TOTAL CREDIT HOURS TO DEGREE 131

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC 3246 and by selecting one technical or general education elective that is an approved 6A communication course or by completing an AA degree at a Florida Community College.

The writing intensive and capstone design exit requirements are fully met through ENC3246 and a Capstone Design Course.

Civil Engineering Concentration AND CAPSTONE DESIGN Requirements

Civil Engineering students take one of the 3 tracks next listed:

Structures/Materials/Geotechnical Track
CES 4702 Concepts of Concrete Design 3
CES 4605 Concepts of Steel Design 3
CGN 4851 Concrete Construction Materials 3
CEG 4012 Geotechnical Engineering II or TTE 4005 Transportation Engineering II 3
XXXXXXXX Technical Elective 3
CES 4750 Capstone Structures/Materials/Geotechnical Design 3

Geotechnical/Transportation Track
CGN 4851 Concrete Construction Materials 3
CEG 4012 Geotechnical Engineering II 3
TTE 4005 Transportation Engineering 3
XXXXXXXX Technical Elective 3
XXXXXXXX Technical Elective 3
CEG 4850 Capstone Geotechnical/Transportation Design 3

Environmental/Water Resources Track
ENV 4417 Water Quality and Treatment 3
CWR 4540 Water Resources Engineering 3
CEG 4012 Geotechnical Engineering II or TTE 4005 Transportation Engineering II 3
XXXXXXXX Technical Elective 3
XXXXXXXX Technical Elective 3
CWR 4812 Capstone Water Resources/Environmental Design 4
The Program supports the following technical elective courses:

- CCE 4031 Construction Management 3
- CEG 4012 Geotechnical Engineering II 3
- CES 4605 Concepts of Steel Design 3
- CES 4702 Concepts of Concrete Design 3
- CGN 4851 Concrete Construction Materials 3
- CGN 4933 Special Topics in Civil & Environmental Engineering ** 3
- CWR 4540 Water Resources Engineering I 3
- ENV 4417 Water Quality and Treatment 3
- SUR 2101 Engineering Land Survey 3
- TTE 4005 Transportation Engineering II 3
- TTE 4003 Transportation and Society 3

**Please see academic advisor for selected special topics courses.

** COMPUTER SCIENCE AND ENGINEERING

Undergraduate Degrees Offered:
- Bachelor of Science in Computer Science (B.S.C.S)
- Bachelor of Science in Computer Engineering (B.S.Cp.E.)
- Bachelor of Science in Information Systems (B.S.I.S)

Graduate Degrees Offered:
- Master of Science in Computer Science (M.S.C.S)
- Master of Science in Computer Engineering (M.S.Cp.E.)
- Master of Science in Engineering Science (M.S.E.S.)
- Doctor of Philosophy in Computer Science and Engineering (Ph.D.)
- Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers coursework and study in all areas fundamental to Computer Science, Computer Engineering, and Information Systems. Three undergraduate degree programs are offered within the Department which lead to the Bachelor of Science in Computer Science, in Computer Engineering, and in Information Systems. The Computer Science program focuses on the design, development, and application of software systems and on the theory of computation. Additional course work in algorithms, discrete structures, object oriented design, data structures, operating systems, digital logic design, computer architecture, and a wide range of advanced electives extend and supplement the core. The Computer Engineering program emphasizes the application of engineering principles to the design of computer hardware and software and devotes additional time to issues of computer architecture and advanced topics in hardware design, including extensive laboratory work. Students in this program also acquire a broad background in engineering topics through related coursework in the College. The Information Systems program combines a basic coverage of software with a core of business related courses and additional course work in areas such as networks and databases. The emphasis in this program is on the application of computing. Graduates from the Department follow rewarding careers in software and hardware development in industry and in government agencies. Graduates are also often involved in the systems-level definition of large-scale computing operations for manufacturers of computers and for computer users. Graduates find challenging and high-paying positions. The undergraduate curriculum prepares students for graduate education towards an M.S. or Ph.D. within the Department or at other universities. The Department faculty are very committed to including undergraduate students in research through the Research Experience for Undergraduates (REU) program.

The Department offers a five year B.S./M.S. program where highly motivated students can complete both a B.S. and M.S. degree in five years. The five year program allows students to take graduate courses in their senior year that count towards both their B.S. and M.S. degrees. The Department also offers a minor in Computer Science to well prepared students from other majors. The minor comprises 18 to 21 hours of course work within the Departmental core courses and advanced electives. The minor is intended for students who are interested in learning the fundamentals of Computer Science to enhance their major. The minor will also be of interest to those students intending to pursue a graduate degree where computing is essential background knowledge.

Mission Statement

In keeping with the mission of the College of Engineering, the Department of Computer Science and Engineering strives for excellence in teaching, research, and public service. Specifically the Department aspires to:

1. Lead the advancement of computer science through internationally recognized research and graduate education, as well as technology transfer to regional industries.
2. Prepare students for full and ethical participation in a diverse society and encourage lifelong learning.
3. Educate students in the best practices of the field as well as integrate the latest research into the curriculum.
4. Foster the development of problem solving and communication skills as an integral component of the profession.
5. Provide quality learning experiences through small classes, active learning styles of teaching, and opportunities for meaningful interactions between students and faculty.

Objectives
The Department of Computer Science and Engineering has established the following objectives for graduates of the Department. Since the Department offers three degree programs, the objectives are defined for each program.

Computer Science Program Educational Objectives
1. Our graduates will apply their knowledge and skills to succeed in a computer science career and/or obtain an advanced degree.
2. Our graduates will function ethically and responsibly and will remain informed and involved as full participants in our profession and our society. Our graduates will successfully function in multi-disciplinary teams.
3. Our graduates will apply the basic principles and practices of computing grounded in mathematics and science to successfully complete software related engineering projects to meet customer business objectives and/or productively engage in research.
4. Our graduates will apply the basic computing principles and the knowledge of major areas of application of those fundamentals to the benefit of society.

Computer Engineering Program Educational Objectives
1. Our graduates will apply their knowledge and skills to succeed in a computer engineering career and/or obtain an advanced degree.
2. Our graduates will function ethically and responsibly and will remain informed and involved as full participants in our profession and our society. Our graduates will successfully function in multi-disciplinary teams.
3. Our graduates will apply the basic principles and practices of computing grounded in mathematics and science to successfully complete hardware and/or software related engineering projects to meet customer business objectives and/or productively engage in research.
4. Our graduates will apply the basic principles and practices of engineering in the computing domain to the benefit of society.

Computer Information Systems Program Educational Objectives
1. Our graduates will apply their knowledge and skills to succeed in an information systems career.
2. Our graduates will function ethically and responsibly and will remain informed and involved as full participants in our profession and our society. Our graduates will successfully function in multi-disciplinary teams.
3. Our graduates will apply the basic principles and practices of computing grounded in mathematics, science and business to successfully complete projects and perform services related to information systems to meet customer business objectives.
4. Our graduates will apply the basic computing principles and the knowledge of major areas of application of those fundamentals to the benefit of society.

Departmental Policies
In addition to the College’s graduation requirements, the Department has the following policies:
1. Mandatory academic advising of students.
2. Exit interviews as a graduation requirement.
3. In addition to the College’s graduation requirements, the department policy concerning grades is:
 a. The minimum grade in specialization courses is a “C-”, except as stated in department admission requirements.
 b. The minimum grade in math, science, and engineering courses which are required for the degree is a “C-”, except as stated in department admission requirements.

Four-Year Curriculum in Computer Science

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements. Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of "C" is the minimum acceptable grade ("C-" is insufficient).

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College. Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.
Computer Science Admissions Requirements
All students must complete the equivalent of USF Composition I & II, Engineering Calculus I & II and Calculus-based General Physics I & II (with labs) with an overall grade point average of 3.00 or higher in these courses (best attempt) to be admitted to the CSE department. Continuation in the major requires successful completion of CDA 3103 and COP 3514 with the required GPA as stated in the Computer Science & Engineering prerequisite statement in the College of Engineering general section.

Computer Science (BCS), BSCS, 120 – TAPS Plan
The curricula and courses presented below are a guide for remaining on track towards the bachelor’s degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.

<table>
<thead>
<tr>
<th>Fall Semester - Year 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2281 Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>XXX XXXX Natural Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester - Year 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COP 2510 Programming Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ENC 1102 Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2048 General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2048L General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall Semester - Year 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COP 3514 Program Design</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2283 Engineering Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2049 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2049L General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>XXX XXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester - Year 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CDA 3103 Computer Organization</td>
<td>3</td>
</tr>
<tr>
<td>COP 3331 Object-Oriented Software Design</td>
<td>3</td>
</tr>
<tr>
<td>COT 3100 Introduction to Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>
Summer Term - Year 2
CDA 3201 Computer Logic and Design 3
CDA 3201L Computer Logic Design Lab 1
COP 4530 Data Structures 3
EGN 4450 Introduction to Linear Systems 2
Total 9

Fall Semester - Year 3
CDA 4205 Computer Architecture 3
COP 4600 Operating Systems 3
COT 4400 Analysis of Algorithms 3
EGN 3443 Probability and Statistics for Engineers 3
XXX XXXX Natural Sciences Elective 3
Total 15

Spring Semester - Year 3
ENC 3246 Communication for Engineers (WI) 3
XXX XXXX Department Upper-Level Elective (CSE Theory Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Software Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Software Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
Total 15

Fall Semester - Year 4
XXX XXXX Human Cultural Diversity and Global Context Elective 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
XXX XXXX Humanities Elective 3
XXX XXXX Fine Arts Elective 3
Total 15

Spring Semester - Year 4
CIS 4250 Ethical Issues and Professional Conduct 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
XXX XXXX Elective (Upper-Level Humanities, Social Science or Fine Arts Elective) 3
Total 12

TOTAL CREDIT HOURS TO DEGREE 120

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC3246 and CIS4250 or by completing an A.A. degree at a Florida Community College. The writing intensive and capstone design exit requirements are fully met through ENC3246 and CIS4250.

Four-Year Curriculum in Computer Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements. Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of "C" is the minimum acceptable grade.
Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College. Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Mathematics:

<table>
<thead>
<tr>
<th>USF</th>
<th>C/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2281</td>
<td>MAC 2311/MAC 2281 (4)</td>
</tr>
<tr>
<td>MAC 2282</td>
<td>MAC 2312/MAC 2282 (4)</td>
</tr>
<tr>
<td>MAC 2283</td>
<td>MAC 2313/MAC 2283 (4)</td>
</tr>
<tr>
<td>MAP 2302</td>
<td>MAP 2302/ MAP X305(3)</td>
</tr>
</tbody>
</table>

Natural Sciences:

<table>
<thead>
<tr>
<th>USF</th>
<th>C/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045/CHM 2045L</td>
<td>CHM X045/L or CHM X045C or CHS X440/CHM 045L (4)</td>
</tr>
<tr>
<td>CHM 2046/CHM 2046L</td>
<td>CHM X046/L or CHM 046C</td>
</tr>
<tr>
<td>PHY 2048/PHY 2048L</td>
<td>PHY X048C or PHY X043/X048L (4)</td>
</tr>
<tr>
<td>PHY 2049/PHY 2049L</td>
<td>PHY X049C or PHY X044//PHY X049L (4)</td>
</tr>
</tbody>
</table>

Other:

COP XXXX* COP XXXX*

*Intro Programming in Ada, C, C++, JAVA, or equivalent language.

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Computer Engineering Admissions Requirements

All students must complete the equivalent of USF Composition I & II, Engineering Calculus I & II and Calculus-based General Physics I & II (with labs) with an overall grade point average of 3.00 or higher in these courses (best attempt) to be admitted to the CSE department. Continuation in the major requires successful completion of CDA 3103 and COP 3514 with the required GPA as stated in the Computer Science & Engineering prerequisite statement in the College of Engineering general section.

Computer Engineering (ECP), BSCP, 128 – TAPS Plan

The curricula and courses presented below are a guide for remaining on track towards the bachelor’s degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.

Fall Semester - Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2045L General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2281 Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>XXX XXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester - Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP 2510 Programming Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ENC 1102 Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2048 General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2048L General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Fall Semester - Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP 3514 Program Design</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2283 Engineering Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2049 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2049L General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>XXX XXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>
Spring Semester - Year 2
- CDA 3103 Computer Organization 3
- COP 3331 Object-Oriented Design 3
- COT 3100 Introduction to Discrete Structures 3
- MAP 2302 Differential Equations (or EGN 3433 Modeling and Analysis of Engineering Systems) 3
 (Note: EGN 3433 is not a 6AM course)
- XXX XXXX Humanities Elective 3
- Total 15

Summer Term - Year 2
- CDA 3201 Computer Logic and Design 3
- CDA 3201L Computer Logic Design Lab 1
- COP 4530 Data Structures 3
- EGN 4450 Introduction to Linear Systems 2
- Total 9

Fall Semester - Year 3
- CDA 4205 Computer Architecture 3
- COP 4600 Operating Systems 3
- COT 4400 Analysis of Algorithms 3
- EEE 3394 Electronic Materials 3
- EGN 3373 Introduction to Electrical Systems I 3
- Total 15

Spring Semester - Year 3
- CDA 4203 Computer Science Design 3
- CDA 4203L Computer Science Design Lab 1
- EGN 3615 Engineering Economics with Social and Global Implications 3
- XXX XXXX Department Upper-Level Elective (CSE Elective) 3
- XXX XXXX Department Upper-Level Elective (CSE Hardware Elective) 3
- XXX XXXX Natural Sciences Elective 3
- Total 16

Fall Semester - Year 4
- CDA 4213 CMOS-VLSI Design 3
- CDA 4213L CMOS-VLSI Design Lab 1
- EGN 3443 Probability and Statistics for Engineers 3
- ENC 3246 Communication for Engineers (WI) 3
- XXX XXXX Department Upper-Level Elective (CSE Elective) 3
- XXX XXXX Fine Arts Elective 3
- Total 16

Spring Semester - Year 4
- OIS 4250 Ethical Issues and Professional Conduct 3
- OIS 4910 Computer Science Project 2
- XXX XXXX Human Cultural Diversity and Global Context 3
- XXX XXXX Department Upper-Level Elective (CSE Hardware Elective) 3
- XXX XXXX Humanities Elective 3
- Total 14

TOTAL CREDIT HOURS TO DEGREE: 128

Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC3246 and CIS4250 or by completing an A.A. degree at a Florida Community College. The writing intensive and capstone design exit requirements are fully met through ENC3246 and CIS4250.
Four-Year Curriculum in Information Systems

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade (“C-” is insufficient).

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College. Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP XXXX*</td>
<td>3</td>
</tr>
<tr>
<td>MAC X311</td>
<td>4</td>
</tr>
<tr>
<td>MAC X312</td>
<td>4</td>
</tr>
<tr>
<td>PHY X048/X048L</td>
<td>4</td>
</tr>
<tr>
<td>PHY X049/X049L</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>PHY X049C</td>
<td>4</td>
</tr>
</tbody>
</table>

*Introductory Programming in Ada, C, C++, Java, or PASCAL or equivalent language.

Natural Sciences:

XXX XXXXX** 6

Two (2) science courses for science majors.

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Information Systems Admissions Requirements

All students must complete the equivalent of USF Composition I & II, Engineering of Life Science Calculus I & II and General Physics I & II (with labs) with an overall grade point average of 3.00 or higher in these courses (best attempt) to be admitted to the CSE department. Continuation in the major requires successful completion of CDA 3103 and COP 3514 with the required GPA as stated in the Computer Science & Engineering prerequisite statement in the College of Engineering general section.

Computer Information Systems (EIF), BSIS, 120 – TAPS Plan

The curricula and courses presented below are a guide for remaining on track towards the bachelor's degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.

Fall Semester - Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2281 Engineering Calculus I (or MAC 2241 Life Sciences Calculus I)</td>
<td>4</td>
</tr>
<tr>
<td>XXX XXXXX Natural Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
</tbody>
</table>

Spring Semester - Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP 2510 Programming Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ENC 1102 Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II (or MAC 2242 Life Sciences Calculus II)</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2048 General Physics I (or PHY 2053 General Physics I)</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2048L General Physics I Laboratory (or PHY 2053L General Physics I Laboratory)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>
Fall Semester - Year 2
ACG 2021 Principles of Financial Accounting 3
COP 3514 Program Design 3
ECO 2013 Economic Principles (Macroeconomics) 3
PHY 2049 General Physics II (or PHY 2054 General Physics II) 3
PHY 2049L General Physics II Laboratory (or PHY 2054L General Physics II Laboratory) 1
Total 13

Spring Semester - Year 2
CDA 3103 Computer Organization 3
COP 3331 Object-Oriented Software Design 3
COT 3100 Introduction to Discrete Structures 3
XXX XXXX Social and Behavioral Sciences Elective 3
XXX XXXX Humanities Elective 3
Total 15

Summer Term - Year 2
ECO 2023 Economic Principles (Microeconomics) 3
COP 4530 Data Structures 3
XXX XXXX Fine Arts Elective 3
Total 9

Fall Semester - Year 3
COP 4600 Operating Systems 3
COT 4400 Analysis of Algorithms 3
EGN 3443 Engineering Statistics I 3
MAN 3025 Principles of Management 3
XXX XXXX Humanities Elective 3
Total 15

Spring Semester - Year 3
CEN 4020 Software Engineering 3
CEN 4023 Software System Development 3
EGN 3615 Engineering Economics with Social and Global Implications 3
XXX XXXX Department Upper-Level Elective (CSE Software Elective) 3
XXX XXXX Natural Science Elective 3
Total 15

Fall Semester - Year 4
EGN 4450 Introduction to Linear Systems 2
XXX XXXX Human Cultural Diversity and Global Context 3
XXX XXXX Department Upper-Level Elective (CSE Software Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
Total 14

Spring Semester - Year 4
OIS 4250 Ethical Issues and Professional Conduct 3
ENC 3246 Communication for Engineers (WI) 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
XXX XXXX Department Upper-Level Elective (CSE Elective) 3
Total 12

TOTAL CREDIT HOURS TO DEGREE 120
Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC3246 and CIS4250 or by completing an A.A. degree at a Florida Community College. The writing intensive and capstone design exit requirements are fully met through ENC3246 and CIS4250.

Computer Science Minor

This Computer Science minor is an 18 credit hour program that is open to all students, except for Department majors, that meet the prerequisites listed below. All students desiring to pursue the minor must meet the same entry and continuation requirements as a Departmental major. The Computer Science minor is expected to be very attractive to students in other Engineering departments, and to students in Mathematics and the Sciences (including Physics, Chemistry, and Biology). Students must register with the Department of Computer Science and Engineering undergraduate advisor prior to starting this minor program. Consultation with the department undergraduate advisor will insure that students are informed of all offered courses. All catalog prerequisites and registration requirements must be met for enrollment in any of the courses required for the minor. All students desiring to pursue the minor must meet the same entry and continuation requirements as a Departmental major.

Prerequisite courses:
1. Calculus I and II (MAC 2281 and MAC 2282 are recommended)
2. Physics I and II with lab (PHY 2048/2048L and PHY 2049/2049L are recommended)
3. Programming Concepts COP 2510 or other approved introductory programming course

Required Courses (12 hours)
- COP 3514 Program Design 3
- CDA 3103 Computer Organization 3
- COP 3331 Object Oriented Design 3
- EEL 4851 (or COP 4530) Data Structures 3

The remaining six credit hours can be taken from electives offered by the department. Specialty tracks in hardware, software, theory, and many other areas can be defined in consultation with the department undergraduate advisor. A specific pre-graduate school track (requiring a total of 21 hours) intended for students planning to seek admission into the department (CSE) graduate program has been defined as follows:

- COT 4400 Analysis of Algorithms 3
- COP 4600 Operating Systems 3
- CDA 4205 Computer Architecture 3

Successful completion of the minor requires a minimum 2.0 GPA in the above listed courses.

ELECTRICAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Electrical Engineering (B.S.E.E.)

Graduate Degrees Offered:
Master of Science in Electrical Engineering (M.S.E.E.)
Master of Engineering (M.E.)
Master of Science in Engineering (M.S.E.)
Master of Science in Engineering Science (M.S.E.S)
Doctor of Philosophy in Electrical Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers study in all areas fundamental to Electrical Engineering and the electrical sciences: circuit analysis and design, electronics, communications, electromagnetics, controls, solid state, system analysis, digital circuit design and microelectromechanical systems (MEMS). Basic concepts are augmented with well-equipped laboratories in circuits, electronics, digital systems, microwave techniques, wireless circuits & systems, and controls and communications. In addition, a general-purpose computer facility, a microprocessor and digital signal processing laboratory, and a microelectronics fabrication, design/test and metrology laboratory are available to undergraduate and graduate students.

Mission Statement

The mission of the Electrical Engineering Department at the University of South Florida is to provide internationally recognized educational programs; to conduct and disseminate internationally recognized research benefiting humanity; to provide service to society; and to emphasize the need for lifelong learning, ethical conduct and an understanding of the diverse social context in which engineering is practiced.
Objectives
The Department objectives are to produce graduates
1. with the knowledge and skills necessary to practice Electrical Engineering successfully.
2. who can pursue advanced topics through graduate or professional studies.

Students pursuing the Bachelor of Science in the Electrical Engineering program take designated coursework in network analysis, electronics, communications, electromagnetic theory, control systems, microelectronics and microprocessors. This coursework is supplemented by electives in many specialized areas of electrical engineering.

Students completing this program normally pursue industrial careers in electronics, communications, power and controls, digital systems, microelectronics, and information systems. The electrical graduate may apply his/her knowledge to such diverse areas as wireless and satellite communications, remote guidance, MEMS, sensing technology, systems integration, automation, computer and information systems, electronic power generation and transmission, electrically propelled transportation, etc. The graduate may do this by performing needed engineering functions related to research and development (often requires an advanced degree), design, production, operation, sales, or management of these products/services.

Departmental Policies
In addition to the College’s graduation requirement, the department has the following policies:
1. Mandatory academic advising of students for each term.
2. Exit interviews as a graduation requirement.
3. Students must pass all required BSEE courses, except EGN 3373 and EGN 3374, humanities and social sciences, with a grade of “C” or better. EGN 3373 and EGN 3374 must be passed with a grade of B or better to continue in the program while a D is acceptable in humanities and social sciences.

Four-Year Curriculum in Electrical Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College. Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Mathematics:
- USF
 - MAC 2281
 - MAC 2282
 - MAC 2283
 - MAP 2302
- C/C
 - MAC 2311/MAC 2281 (4)
 - MAC 2312/MAC 2282 (4)
 - MAC 2313/MAC 2283 (4)
 - MAP 2302/ MAP X305(3)

Natural Sciences:
- USF
 - CHM 2045/CHM 2045L
 - CHM 2046/CHM 2046L
 - PHY 2048/PHY 2048L
 - PHY 2049/PHY 2049L
- C/C
 - CHM X045/L or CHM X045C or CHS X440/CHM 045L (4)
 - CHM X046/L or CHM 046C
 - PHY X048C or PHY X043/X048L (4)
 - PHY X049C or PHY X044//PHY X049L (4)

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Electrical Engineering Admissions Requirements
Transfer students must have completed the equivalent of the USF Engineering Calculus and Physics sequences and Chemistry I and Chemistry I lab with a minimum GPA in these courses of 2.25 including all attempts; must have an overall GPA of 2.0 or better.

Electrical Engineering (EEL), BSEE, 128 – TAPS Plan
The curricula and courses presented below are a guide for remaining on track towards the bachelor's degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester - Year 1</td>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2281 Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EGN2080 History of Electrotechnology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX Fine Arts Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Spring Semester - Year 1</td>
<td>CHM 2045 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHM 2045L General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EGN 3000 Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENC 1102 Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2282 Engineering Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 2048 General Physics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 2048L General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Fall Semester - Year 2</td>
<td>EGN 3443 Probability and Statistics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGN 3615 Engineering Economics with Social and Global Implications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2283 Engineering Calculus III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 2049 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 2049L General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>Spring Semester - Year 2</td>
<td>EEE 3394 Electronic Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COP 2270 C for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGN 3373 Introduction to Electrical Systems I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGN 3420 Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAP 2302 Differential Equations (or EGN 3433 Modeling and Analysis of Engineering Systems) (Note: EGN 3433 is not a 6AM course)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>Summer Term - Year 2</td>
<td>EGN 3374 Electrical Systems II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENC 3246 Communication for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>XXX XXXX Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9</td>
</tr>
<tr>
<td>Fall Semester - Year 3</td>
<td>EEE 4351C Semiconductor Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEL 3100 Network Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEL 3115L Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EEL 4471 Electromagnetics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEL 4705 Logic Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEL 4705L Logic Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>Spring Semester - Year 3</td>
<td>EEE 3302 Electronics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEL 4102 Linear Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEL 4423L Wireless Circuits & Systems Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>EEL 4743L Microprocessor Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EEL 4744 Microprocessor Principles and Applications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGN 3375 Electromechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>
Fall Semester - Year 4
EEE 4301 Electronics II 3
EEL 3116L Laboratory II 1
EEL 4512C Introduction to Communication Systems 3
EEL 4657 Linear Control Systems 3
EEL 4657L Linear Controls Laboratory 1
EEL 4906 Engineering Design/Professionalism 3
Total 14

Spring Semester - Year 4
EEL 4914 Senior Project Design 3
XXX XXXX Human Cultural Diversity and Global Context 3
XXX XXXX Department Upper-Level Elective 3
XXX XXXX Department Upper-Level Elective 3
XXX XXXX Social and Behavioral Sciences Elective 3
Total 15

TOTAL CREDIT HOURS TO DEGREE 128

Gordon Rule (6A) is fully met through the mathematics courses above, ENC 1101, ENC 1102, ENC 3246 and by selecting one technical or general education elective that is an approved 6A communication course or by completing an AA degree at a Florida Community College. The writing intensive and capstone design requirements are fully met through ENC 3246 and EEL4914.

Departmental Policy: For EE majors a minimum grade of B is required for both EGN 3373 and EGN 3374.

• INDUSTRIAL AND MANAGEMENT SYSTEMS ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Industrial Engineering (B.S.I.E.)

Graduate Degrees Offered:
Master of Science in Industrial Engineering (M.S.I.E.)
Master of Engineering (M.E.)
Master of Science in Engineering Science (M.S.E.S.)
Master of Science in Engineering Management (M.S.E.M)
Master of Industrial Engineering (M.I.E.)
Doctor of Philosophy in Industrial Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

This department offers study pertinent to the design, evaluation and operation of a variety of industrial systems, ranging from the analysis of public systems to the operation of manufacturing plants. Topics include production planning and control, production and plant design, applied statistics, operations research, human factors and productivity, manufacturing, and automation. The department has excellent laboratory facilities that support class projects and research in microcomputer applications, computer-aided manufacturing, human performance, automation, and applications of robotics. Evening and off-campus programs are available through the Master of Science in Engineering Management (M.S.E.M.) program. The department also administers the manufacturing option in the M.S.E. program.

Mission Statement
The Department of Industrial and Management Systems Engineering is committed to strong and innovative educational and research programs, economic development, and community initiatives. Our efforts are focused on attracting high-potential students and teaching them to think critically and to communicate effectively. The IMSE department strives for a cutting edge, internationally recognized research program. Our curriculum educates students to work successfully in the global environment and to pursue advanced studies.

Objectives
The objectives of the Department are to:
1. Attract and recruit high quality students;
2. Educate, motivate and serve students with the ultimate goal of preparing them for their professional careers;
3. Engage in an agile and interdisciplinary research program deserving of international recognition that creates significant broader impact in the areas of technology transfer and development of leaders in engineering;
4. Recruit and mentor a diverse faculty with interdisciplinary interests;
5. Develop strong and internationally recognized academic programs in Industrial Engineering and Engineering Management;
6. Engage the alumni in the growth and development of the department;
7. Take a leadership role in providing service to the profession, industry, and society at large.

Departmental Policies
In addition to the College’s graduation requirement, the department has the following policies:
1. Mandatory academic advising of students for each term.
2. Exit interviews as a graduation requirement.

Four-Year Curriculum in
Industrial and Management Systems Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of "C" is the minimum acceptable grade.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Mathematics:

<table>
<thead>
<tr>
<th>USF</th>
<th>C/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2281</td>
<td>MAC 2311/MAC 2281 (4)</td>
</tr>
<tr>
<td>MAC 2282</td>
<td>MAC 2312/MAC 2282 (4)</td>
</tr>
<tr>
<td>MAC 2283</td>
<td>MAC 2313/MAC 2283 (4)</td>
</tr>
<tr>
<td>MAP 2302</td>
<td>MAP 2302/ MAP X305(3)</td>
</tr>
</tbody>
</table>

Natural Sciences:

<table>
<thead>
<tr>
<th>USF</th>
<th>C/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045/CHM 2045L</td>
<td>CHM X045/L or CHM X045C or CHS X440/CHM 045L (4)</td>
</tr>
<tr>
<td>CHM 2046/CHM 2046L</td>
<td>CHM X046/L or CHM 046C</td>
</tr>
<tr>
<td>PHY 2048/PHY 2048L</td>
<td>PHY X048C or PHY X043/X048L (4)</td>
</tr>
<tr>
<td>PHY 2049/PHY 2049L</td>
<td>PHY X049C or PHY X044//PHY X049L (4)</td>
</tr>
</tbody>
</table>

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Industrial Engineering Admissions Requirements
Transfer students must have completed the equivalent USF Engineering Calculus sequence with a 2.0 GPA; must have completed one year of equivalent USF General Physics and Chemistry courses with a minimum of 2.0 GPA; must have a USF and overall GPA of 2.0 or better.

Industrial Engineering (EIE), BSIE, 128 – TAPS Plan
The curricula and courses presented below are a guide for remaining on track towards the bachelor's degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.

Fall Semester - Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2045L General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2281 Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>XXX XXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester - Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2046 General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Semester</td>
<td>Year</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Fall</td>
<td>Year 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Year 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Year 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Year 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Year 4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spring Semester - Year 4
EIN 4243C Human Factors 3
EIN 4601C Automation and Robotics 3
EIN 4891 Capstone Design 3
ENC 3246 Communication for Engineers (WI) 3
XXX XXXX Department Upper-Level Elective (Industrial Engineering Technical Elective) 3
Total 15

TOTAL CREDIT HOURS TO DEGREE 128

Gordon Rule (6A) is fully met through the mathematics courses above, ENC 1101, ENC 1102, ENC 3246 and EIN 4313 or by completing an AA degree at a Florida Community College. The writing intensive and capstone design exit requirements are fully met through ENC 3246 and EIN4891.

• MECHANICAL ENGINEERING

Undergraduate Degree Offered:
Bachelor of Science in Mechanical Engineering (B.S.M.E.)

Graduate Degrees Offered:
Master of Mechanical Engineering (M.M.E.)
Master of Science in Mechanical Engineering (M.S.M.E.)
Master of Engineering (M.E.)
Master of Science in Engineering (M.S.E.)
Doctor of Philosophy in Mechanical Engineering (Ph.D.)
Doctor of Philosophy in Engineering Science (Ph.D.)

Coursework includes basic science and mathematics, thermal and fluid sciences, material science, solid mechanics, dynamics, machine design, vibrations, instrumentation and control.

Graduates of this program are employed in research, design, production, marketing, service, installation (contracting), maintenance and operation in such industries as mining, petroleum, paper, food, power, manufacturing, air-conditioning, defense systems, aerospace, data processing, communications, and automotive.

Laboratories are available for basic instrumentation, thermal and fluid sciences, solid mechanics, data acquisition and control, CAD/CAE, vibrations, and aerodynamics.

Students pursuing the Bachelor of Science in Mechanical Engineering program take coursework in thermodynamics and heat transfer, instrumentation and measurements, solid and fluid mechanics, dynamics, machine analysis and design, mechanical design, manufacturing processes, vibrations and controls. This is supplemented by elective coursework in such areas as power plant analysis, refrigeration and air conditioning, mechanical design, advanced mechanics, robotics, propulsion, computer-aided design, manufacturing, bio-engineering, alternative energy, thermal design, composite materials, and aerodynamics.

Graduates of this program are employed in design, manufacturing, contracting, operations, marketing, and management in virtually all segments of industry and government, including, but not limited to: aeronautics, aerospace & propulsion; automotive, internal combustion engines, fuel cells & transportation; propulsion systems; electronic utilities & power generation; heating, ventilation & air conditioning; structures & machinery design; mining & oil exploration; paper, textile, food, & petrochemical industries/processing/manufacturing; micro & nano materials and semiconductors; and biomaterials & bioengineering. There are abundant career opportunities in a wide range of industries because mechanical equipment is required in every aspect of modern industry.

Mission Statement
The Mission of the Mechanical Engineering Department is:

a. to provide an exemplary undergraduate and graduate education for students entering the mechanical engineering profession or seeking careers in related fields;
b. to advance scientific knowledge through basic and applied research;
c. to disseminate technical information through scholarly publication and presentation, and continuing education;
d. to advance the profession through service within the associated societies;
e. to promote activities which embrace global development.

Objectives
The objectives of the Undergraduate Program in Mechanical Engineering are:
A. Our graduates will successfully apply concepts of science, mathematics, computation, and engineering in their chosen endeavor;
B. Our graduates will possess knowledge and skills essential to engineering processes, such as design, analysis, synthesis, fabrication and experimental techniques;
C. Our graduates will demonstrate skills for professional interaction and leadership including multi-disciplinary collaboration, and effective oral and written communication.
D. Our graduates will understand technology within a global, societal and economic context. They will also demonstrate continued career development as well as professional and ethical responsibility.

Departmental Policies
In addition to the College’s graduation requirement, the department has the following policies:
1. Mandatory academic advising of students for each term, and;
2. Exit interviews as a graduation requirement.
3. Students are strongly encouraged to take the FE Exam.

Four-Year Curriculum in Mechanical Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University. If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated otherwise, a grade of “C” is the minimum acceptable grade.

Students qualify for direct entry to the department if they have completed the following courses at a Community College or University in the Florida State University System (SUS) and meet all other admissions requirements of the University and College.

Some courses required for the major may also meet General Education Requirements thereby transferring maximum hours to the university.

Mathematics:
USF MAC 2281 MAC 2311/MAC 2281 (4)
MAC 2282 MAC 2312/MAC 2282 (4)
MAC 2283 MAC 2313/MAC 2283 (4)
MAP 2302 MAP 2302/ MAP X305(3)

Natural Sciences:
USF CHM 2045/CHM 2045L CHM X045/L or CHM X045C or CHS X440/CHM 045L (4)
CHM 2046/CHM 2046L CHM X046/L or CHM 046C
PHY 2048/PHY 2048L PHY X048C or PHY X043/X048L (4)
PHY 2049/PHY 2049L PHY X049C or PHY X044//PHY X049L (4)

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative standards required.

Mechanical Engineering Admissions Requirements
Students entering the Mechanical Engineering department must have completed the equivalent USF Engineering Calculus sequence, one year equivalent USF General Physics and one semester equivalent USF General Chemistry with a minimum of 2.5 GPA; and must have an overall and USF GPA of 2.0 or better.

Mechanical Engineering (EME), BSME, 128 – TAPS Plan
The curricula and courses presented below are a guide for remaining on track towards the bachelor’s degree. Please note that alternative courses exist for many of the courses and that this is not an official degree plan. It is an advising tool and students should consult with an advisor in their major to ensure that all degree requirements are met.

Fall Semester - Year 1
CHM 2045 General Chemistry I 3
CHM 2045L General Chemistry I Laboratory 1
EGN 3000 Foundations of Engineering 1
EGS 1113 Introduction to Design Graphics 3
ENC 1101 Composition I 3
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2281 Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>ENC 1102 Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2048 General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2048L General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>XXX XXXX Fine Arts Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>MAC 2283 Engineering Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2049 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2049L General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>EGN 3311 Statics</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX Social and Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2283 Engineering Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2049 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2049L General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>EGN 3343 Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3443 Engineering Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>EML 3500 Mechanics of Solids</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>EML 3041 Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>EML 3262 Kinematics and Dynamics of Machinery</td>
<td>3</td>
</tr>
<tr>
<td>EML 3701 Fluid Systems</td>
<td>3</td>
</tr>
<tr>
<td>EML 4325 Mechanical Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENC 3246 Communication for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>EML 3303 Mechanical Engineering Lab I</td>
<td>3</td>
</tr>
<tr>
<td>EML 4124 Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>EML 4501 Machine Design</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX Human & Cultural Diversity in a Global Context Elective</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX Department Upper-Level Elective (Technical Design Elective)</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>EML 4106C Thermal Systems and Economics</td>
<td>3</td>
</tr>
<tr>
<td>EML 4220 Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>EML 4302 Mechanical Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX Department Upper-Level Elective (Technical Design Elective)</td>
<td>3</td>
</tr>
</tbody>
</table>
• GENERAL ENGINEERING

BACHELOR OF SCIENCE IN ENGINEERING (B.S.E)

Program Mission
The General Engineering Program of the College of Engineering at the University of South Florida provides undergraduate students with a strong, broad-based, engineering education which gives them the basic intellectual and organization skills to work within complex organizational systems with technological, social and environmental components. Specifically graduates of the program are expected to be able to apply knowledge of basic math, science and engineering with an understanding of societal implications of engineering decisions in both local and global context.

This program is tailored to meet the needs of students with academic and career goals that are best met by following a program of study that is cross-disciplinary in nature. The curriculum plan for each student pursuing this option is developed in consultation with faculty advisors and must be approved by the Associate Dean for Academic Affairs or his designee.

Program Objectives
The Objectives of the Undergraduate Program in General Engineering are to prepare students to:

- Apply knowledge of basic math, science and engineering
- Identify, formulate and solve engineering problems
- Design and conduct experiments, as well as analyze and interpret data
- Utilize the techniques, skills and modern engineering tools necessary for engineering practice
- Function effectively on teams
- Utilize well developed oral and written communication skills to effectively interact with colleagues, clients and the public
- Understand the societal implications of engineering decisions and designs in both a local and global context and demonstrate the ethical training needed to evaluate them

Program Application:

Students must submit a statement of purpose and a proposed plan of study signed by a faculty mentor to the Director of Advising, USF College of Engineering, 4202 E. Fowler Avenue, Tampa, FL33620

Admission Requirements:

Completion of
- MAC2311 or MAC2281, MAC2312 or MAC2282
- MAC2313 or MAC 2283
- PHY2048, PHY2048L, PHY2049, PHY2049L
- CHM2045, CHM2045L

with a minimum grade of C (not C-) in these courses.

Meet all minimum performance requirements of the College of Engineering
Graduation Requirements
In addition to the University’s graduation requirements and completion of the required courses and approved specialization
courses, graduation requirements for the Bachelor of Engineering degree program include:
1. Mandatory academic advising of students each term;
2. Exit interviews as a graduation requirement;
3. No grade lower than a C (not a C-) in degree applicable math, science or engineering courses.

Four-Year Curriculum - General Engineering

Prerequisites (State Mandated Common Prerequisites) for Students Transferring from a Florida Community College: If a
student wishes to transfer without an A.A. degree and has fewer than 60 semester hours of acceptable credit, the student must
meet the university’s entering freshman requirements including ACT or SAT test scores, GPA, and course requirements.

Students should complete the following prerequisite courses listed below at the lower level prior to entering the University.
If these courses are not taken at the community college, they must be completed before the degree is granted. Unless stated
otherwise, a grade of “C” is the minimum acceptable grade.

Mathematics:

<table>
<thead>
<tr>
<th>USF</th>
<th>C/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2281</td>
<td>MAC 2311/MAC 2281 (4)</td>
</tr>
<tr>
<td>MAC 2282</td>
<td>MAC 2312/MAC 2282 (4)</td>
</tr>
<tr>
<td>MAC 2283</td>
<td>MAC 2313/MAC 2283 (4)</td>
</tr>
<tr>
<td>MAP 2302</td>
<td>MAP 2302/ MAP X305(3)</td>
</tr>
</tbody>
</table>

Natural Sciences:

<table>
<thead>
<tr>
<th>USF</th>
<th>C/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045/CHM 2045L</td>
<td>CHM X045/L or CHM X045C or CHS X440/CHM 045L (4)</td>
</tr>
<tr>
<td>CHM 2046/CHM 2046L</td>
<td>CHM X046/L or CHM 046C</td>
</tr>
<tr>
<td>PHY 2048/PHY 2048L</td>
<td>PHY X048C or PHY X043/X048L (4)</td>
</tr>
<tr>
<td>PHY 2049/PHY 2049L</td>
<td>PHY X049C or PHY X044//PHY X049L (4)</td>
</tr>
</tbody>
</table>

Please be aware of the immunization, foreign language, continuous enrollment policies of the university, and qualitative
standards required.

Admissions Requirements

Students entering the General Engineering degree must have completed the equivalent USF Engineering Calculus
sequence, one year equivalent USF General Physics and one semester equivalent USF General Chemistry with a minimum
2.0 GPA; and must have a USF and an overall GPA of 2.0 or better.

Continuation Requirements: Completion of the following: EGN 3311, EGN 3343, EGN 3443 and EGN 3373 with grades of C or
better, (C- is insufficient), is required before registration in specialization courses will be permitted.

Department Policies:

1. Advising is mandatory prior to each term.
2. A grade of C or better is required in Math, Science and Engineering Courses (C- is insufficient).
3. College Electives must be relevant to specialization and approved by the Program Coordinator.

Semester I

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1101 Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2281 Engineering Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CHM 2045 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2045L General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 1102 Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2282 Engineering Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>EGN 3000 Foundations of Engineering</td>
<td>1</td>
</tr>
<tr>
<td>PHY 2048 General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2048L General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>XXX XXX Social or Behavioral Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>
Semester III
MAC 2283 Engineering Calculus III 4
EGN 3311 Statics 3
PHY 2049 General Physics II 3
PHY 2049L General Physics II Laboratory 1
Social and Behavioral Sciences Elective 3
XXX XXXX Human & Cultural Diversity in a Global Context Elective 3
Total 17

Semester IV
EGN 3433 Modeling & Analysis of Engineering Systems
or
MAP 2302 Differential Equations 3
EGN 3373 Introduction to Electrical Systems I 3
EGN 3443 Engineering Statistics I 3
EGN 3343 Thermodynamics I 3
Humanities Elective 3
Total 15

Summer
EGN 3615 Engineering Economics with Social and Global Implications 3
Fine Arts Elective 3
Life Science Elective 3
Total 9

Semester V
ENC 3246 Communication for Engineers (WI) 3
XXX XXXX College Elective 3
XXX XXXX College Elective 3
XXX XXXX College Upper-Level Elective 3
XXX XXXX College Upper-Level Elective 3
Total 15

Semester VI
XXX XXXX College Upper-Level Elective 3
Total 15

Semester VII
XXX XXXX College Upper-Level Elective 3
Total 15

Semester VIII
XXX XXXX College Upper-Level Elective 1
XXX XXXX College Upper-Level Elective 3
XXX XXXX College Upper-Level Elective 3
XXX XXXX Exit - College Capstone Design 3
XXX XXXX Elective 3
Total 13
Gordon Rule (6A) is fully met through the mathematics courses above, ENC1101, ENC1102, ENC 3211 and by selecting one technical or general education elective that is an approved 6A communication course or by completing an AA degree at a Florida Community College.

Capstone Design and Writing Intensive Exit Requirements are fully met through ENC3211 and a Capstone Design Course offered in the College of Engineering.

ENGINEERING FACULTY

Chemical & Biomedical Engineering

Civil and Environmental Engineering

Computer Science and Engineering

Electrical Engineering

Industrial and Management Systems

Mechanical Engineering